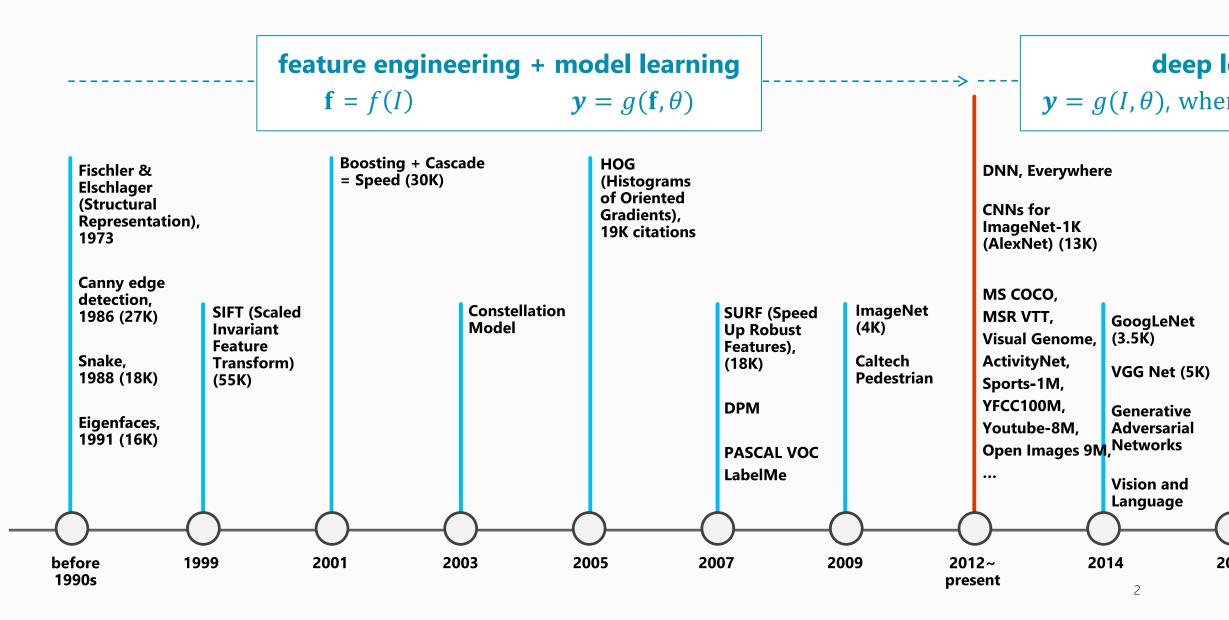
Al and Research

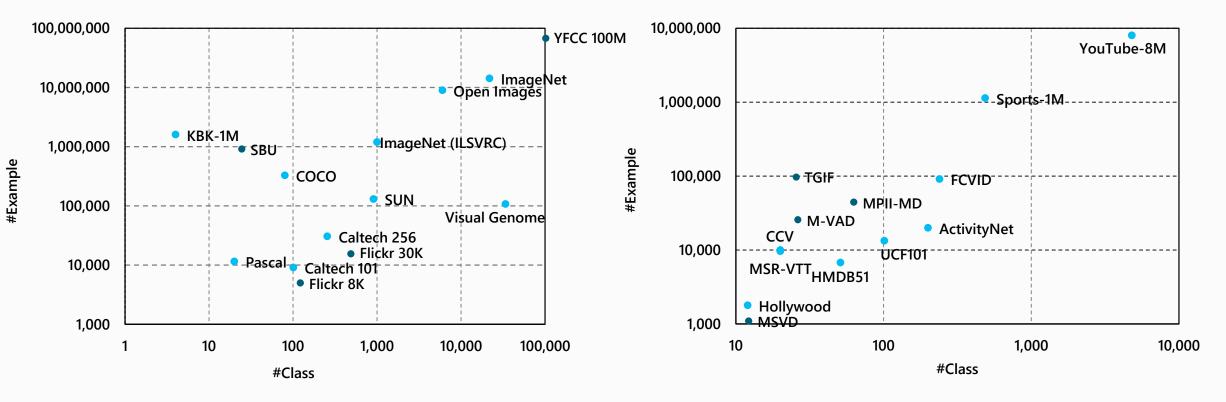
Deep Learning for Intelligent Video Analysis - Part II

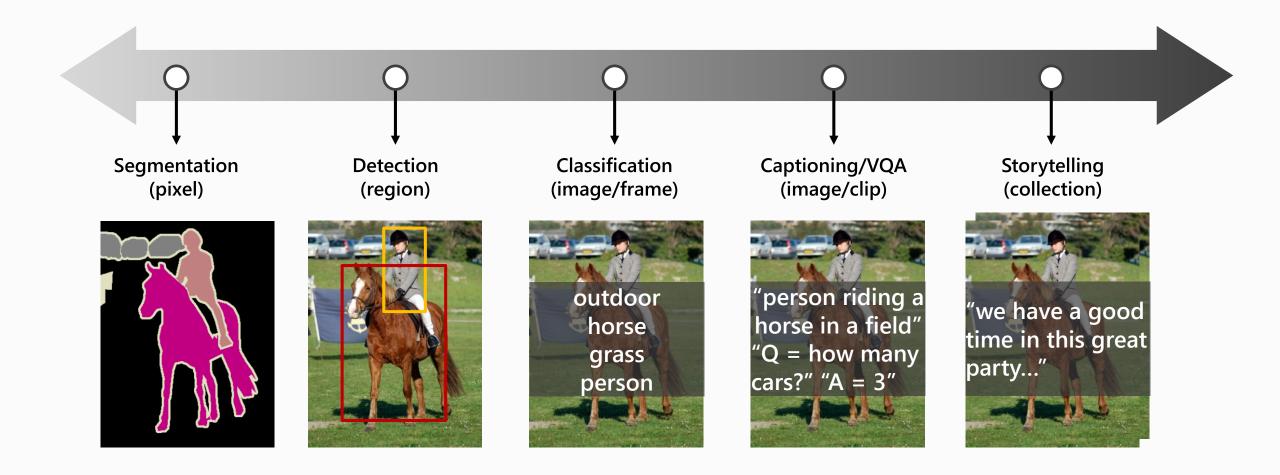
Tao Mei, Senior Research Manager Cha Zhang, Principal Applied Science Manager

Microsoft AI & Research

Microsoft




50 years of progress in visual understanding


Computer vision: 50 years of progress

image

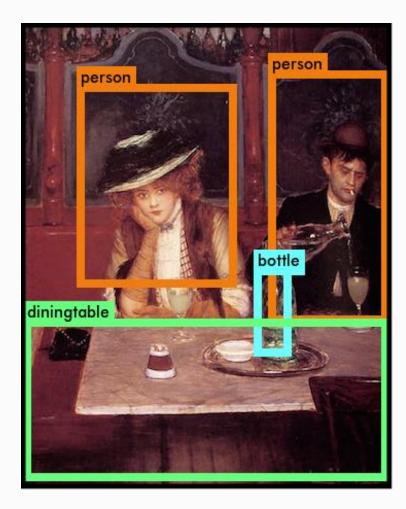

video

Image understanding: core problems

Deep learning for object detection

Approach	Pascal 2007 (mAP)	Speed		
DPM [Felzenszwalb, CVPR'10]	33.7	.07 FPS	14 s/img	
R-CNN [Girshick, CVPR'14]	66.0	.05 FPS	20 s/img	
Fast R-CNN [Girshick, ICCV'15]	70.0	.5 FPS	2 s/img	
Faster R-CNN [Ren, NIPS'15]	73.2	7 FPS	140 ms/img	
YOLO [Redmon, CVPR'16]	69.0	45 FPS	22 ms/img	
YOLO 9000 [Redmon, CVPR'17]	76.8	67 FPS	15 ms/img	

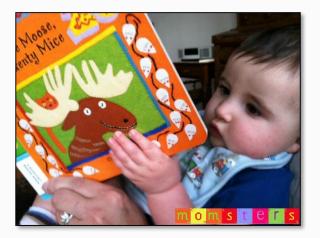
Deep learning for semantic segmentation

Results on the first 5k images from the COCO test set is available at <u>https://github.com/daijifeng001/TA-FCN</u>

Deep learning for image captioning

"I think it's a boat is docked in front of a building." <u>https://www.captionbot.ai/</u> [Microsoft CaptionBot, 2015]

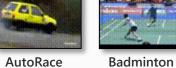
"Sasha Obama, Malia Obama, Michelle Obama, Peng Liyuan et al. posing for a picture with Forbidden City in the background." [Xiaodong He & Lei Zhang, MSR, 2016]


Deep Learning for Image Poem Generation

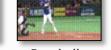
- 学习了1920年以来的519位中国现代诗人的100K行诗 Learned 100K lines of poems from 519 Chinese poets since 1920
- 每学习一轮需要0.6分钟,经过10K次100个小时的迭 代学习
 0.6 min for each learning iteration, 100 hrs overall training time with 10K iterations
- 精选139首结集出版 Published with 139 selected poems

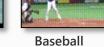
Deep learning to

"describe what a 3-year-old child sees" - visual recognition: classification, detection, segmentation


- "describe what a 5-year-old child sees"
- vision to language
- image captioning & poeming
- visual question-answering

Some statistics about video


55%	3.7 Billion	500 Million
of people watch	daily views for	hours of videos
videos online every	video at facebook	watched daily in
day	facebook	Youtube
30% video ad spend increased 30% from 2015 to 2016	2.6 X people spend 2.6x more time on pages w/ video than w/o	1200% video generates 1200% more shares than text and image



Boxing

Golf

Climbing

Handball

1

Cricket

Hockey

Beach Tennis

Curling

HorseRiding

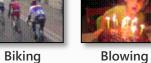
Volleyball

Diving

IceHockey

Skateboarding

Swimming



Fencin

g

Judo

Skating

Bodybuilding

BrushHai r

Football


Fishing

Skiing

Kayak

w do Skipluu

SkippingRope

Rafting

Skydiving

Rowing

Soccer

Softball

Sailing

Surfing

ShootGun

TableTennis

Treadmill

Decorating ChristmasTree

Typing Handstand

Makeup

NailArtDesign

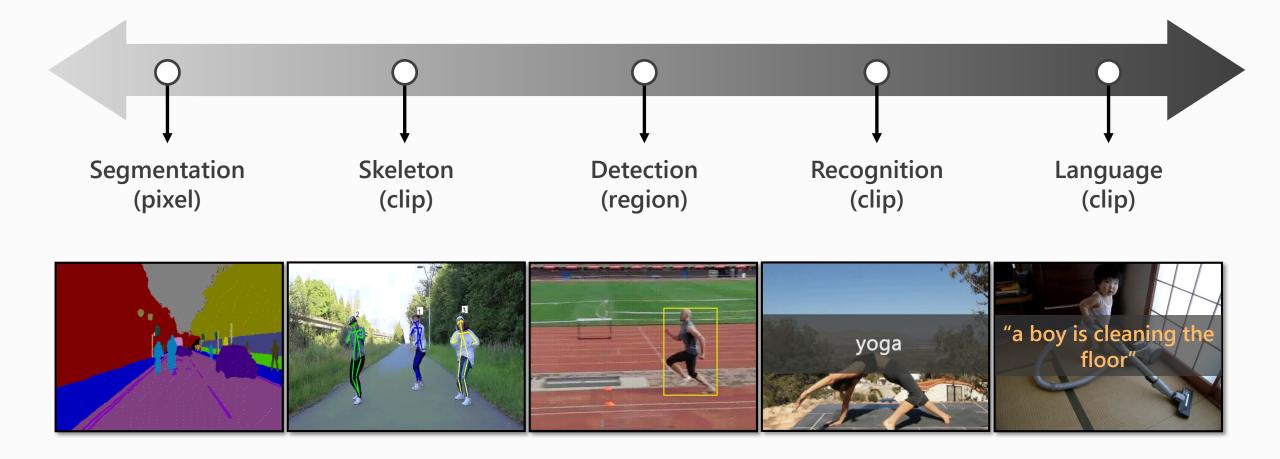
PushUps

Situp

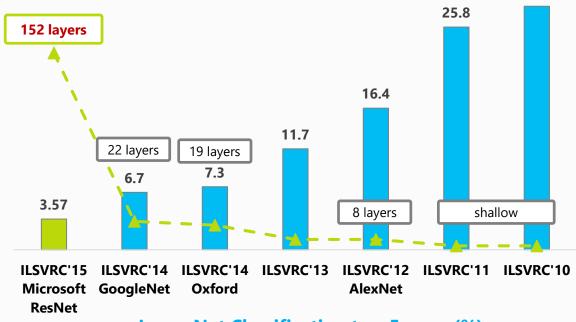
Knitting

Cooking

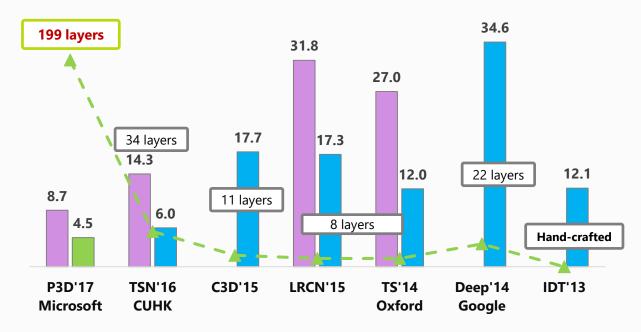
Painting



Video understanding: core problems



This part


- Video representation learning
- Video classification (a.k.a. action recognition)
- Video captioning
- Semantic video segmentation

Learning video representation is harder than image!

28.2

ImageNet Classification top-5 error (%)

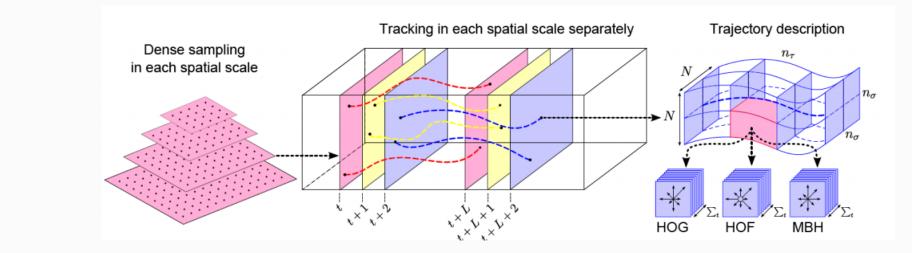
UCF101 Classification top-1 error (%)

Video representation learning

2011

2012

2013-

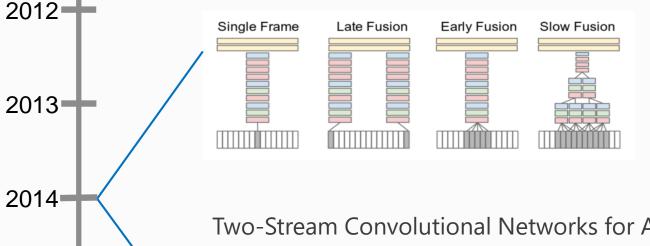

2014=

2015

2016

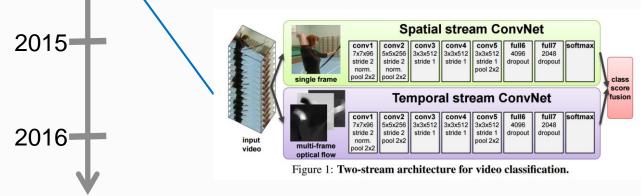
Hand-crafted feature

Action recognition by dense trajectories. [Wang, CVPR'11]

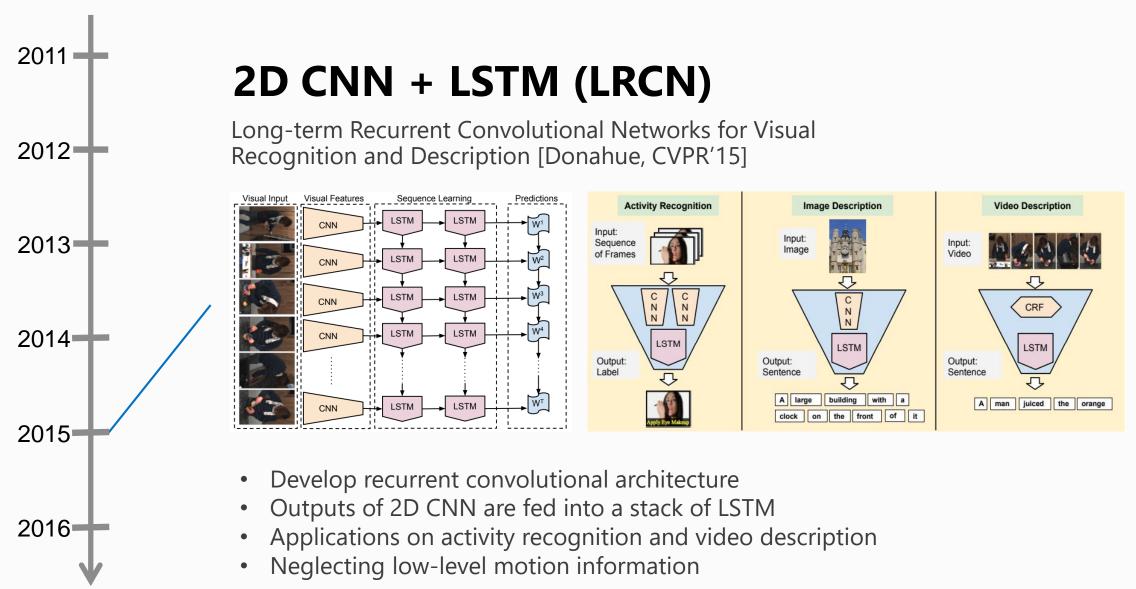

- Suffer from camera motion and illumination change in video
- Not contain high-level semantic information
- High dimensionality
- Too expensive for real-time computation

Video representation learning

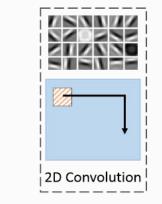
2011 -


2D Convolutional Neural Network

Large-scale Video Classification with Convolutional Neural Networks. [Karpathy, CVPR'14]


- Treat video as a bag of short, fixed-sized clips
- Extend the connectivity of the network in time dimension

Two-Stream Convolutional Networks for Action Recognition in Videos. [Simonyan, NIPS'14]



- Two-stream: frame + motion (stacked optical flow)
- 2D CNN for frame is pre-trained on ImageNet
- 2D CNN for motion is trained from scratch

Video representation learning

Video representation learning: from 2D CNN to 3D CNN

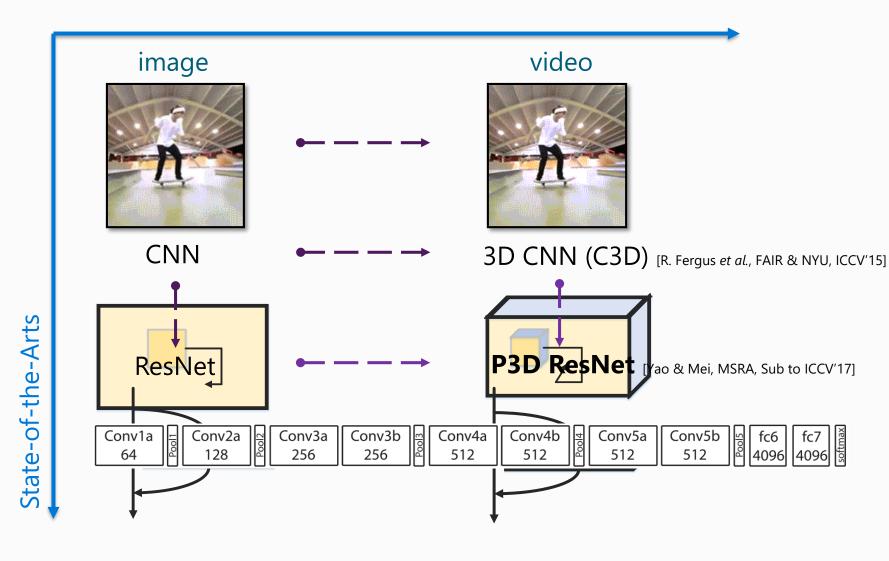
Network comparison on Sports-1M

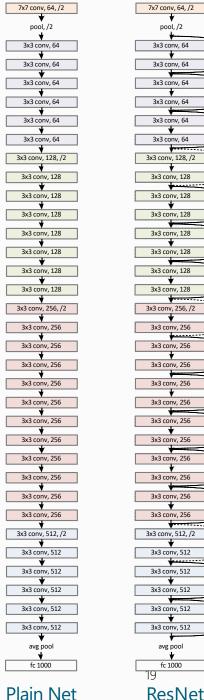
Network	Depth	Model Size	Video hit@1
ResNet	152	235 MB	64.6%
C3D	11	321 MB	61.1%
C3D	100+	~3 GB	

ResNet:

[MSRA, CVPR'16]

video

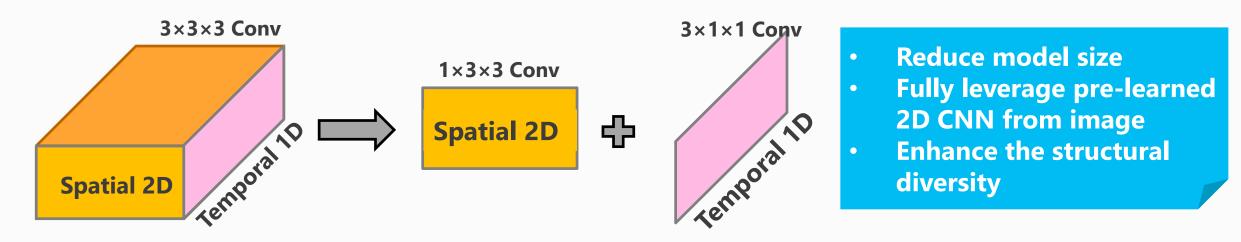

3D ConvNet

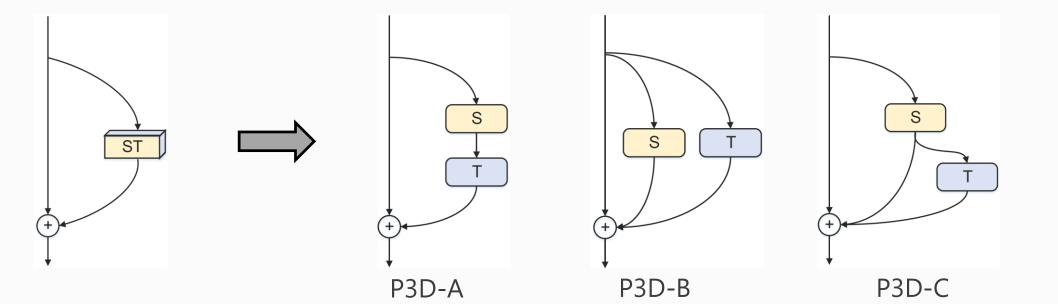

•	Training 3D CNN is very
	computationally expensive

- Difficult to train very **deep** 3D CNN
- Fine-tuning 2D CNN is better than 3D CNN

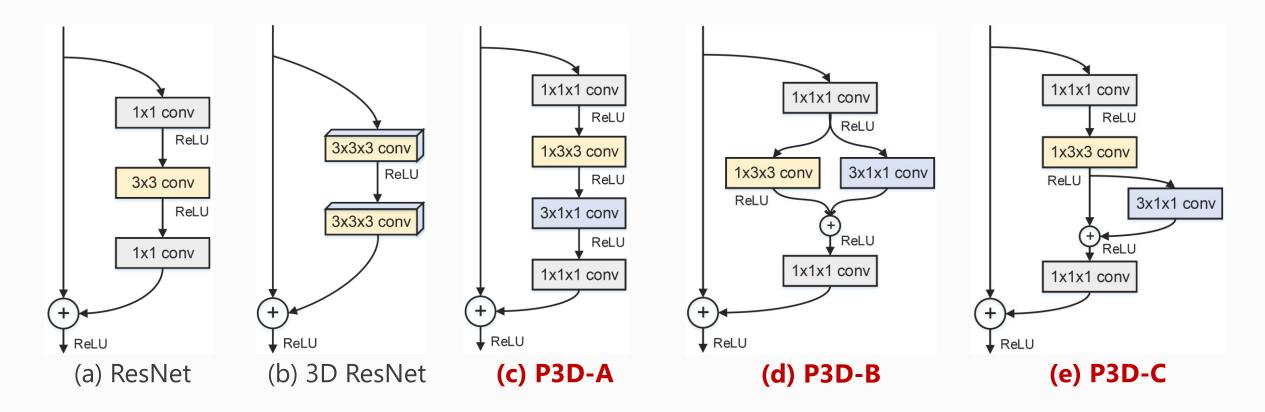
Conv1a	Conv2a	Conv3a	Conv3b	Conv4a	Conv4b	Conv5a	Conv5b	fc6 fc7 Key Jon 4096 4096
64 ⁸	128	256	256	512	512 ⁸	512	512	^{ङ्} 4096 4096 । ज़ि

Pseudo-3D Residual Networks (P3D) [Yao & Mei, ICCV'17]

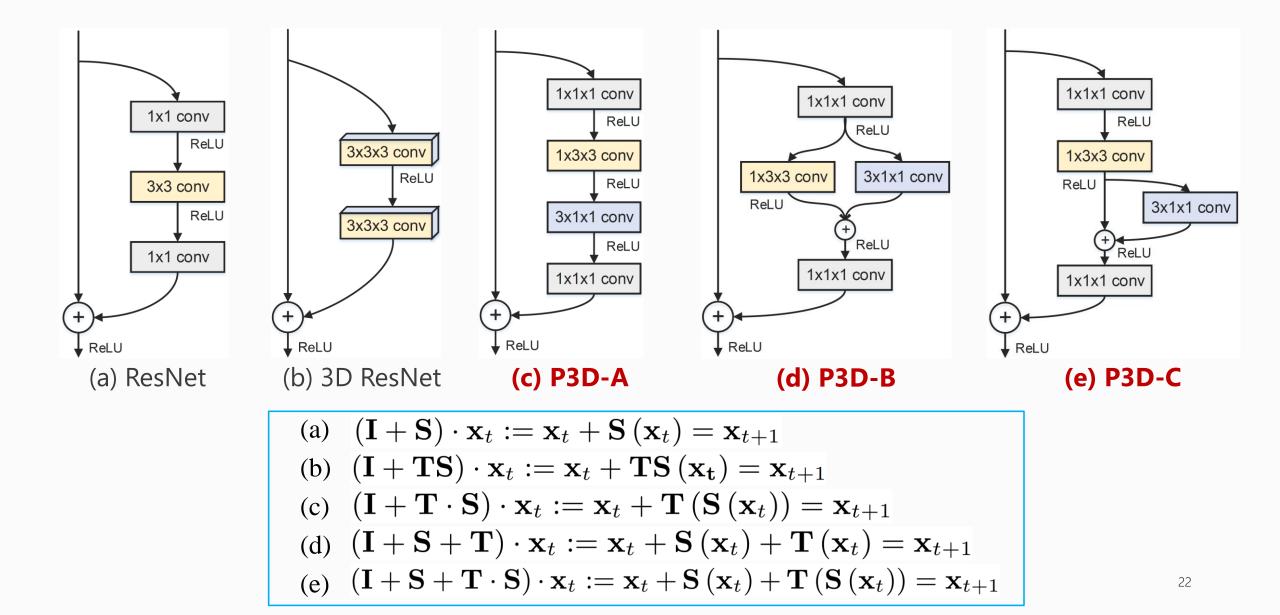




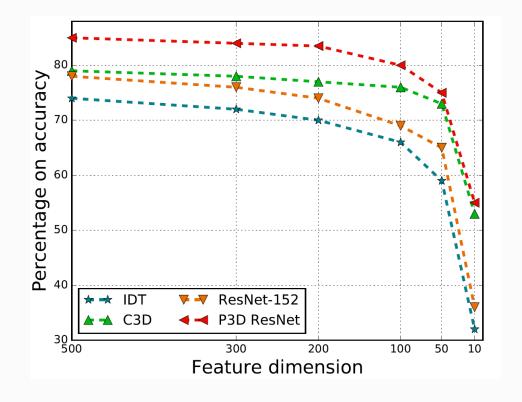
+----


Plain Net

Pseudo-3D Residual Networks (P3D) [Qiu, Yao, Mei, ICCV'17]



P3D: architectures



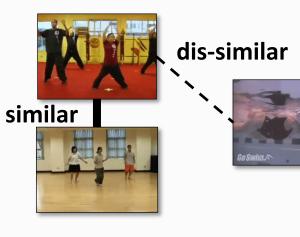
- Mix different P3D blocks to replace Residual Units in a 152-layer ResNet
- Train on Sports-1M dataset (1.13M videos annotated with 487 labels)
- Learn a generic spatiotemporal video representation with **199** layers
- <u>https://github.com/ZhaofanQiu/pseudo-3d-residual-networks</u> [ICCV'17]

P3D <u>https://github.com/ZhaofanQiu/pseudo-3d-residual-networks</u> [Qiu, Yao, Mei, ICCV'17]

P3D https://github.com/ZhaofanQiu/pseudo-3d-residual-networks [Qiu, Yao, Mei, ICCV'17]

Networks	CPU runtime (ms)	GPU runtime (ms)
ResNet-152 (16 frames)	5,600	400
P3D-199 (16 frames)	1,500	150

P3D ResNet consistently outperforms others at each dimension (16 frames/clip).


P3D ResNet performs 3 times faster than ResNet on a single clip (16 frames).

- ActivityNet Untrimmed Task •
- Action Recognition •

Walking the dog

- ASLAN •
- Action Similarity Labeling •

- YUPENN, Dynamic Scene
- Scene Recognition

beach

Method	Top-1	Тор-З	MAP
IDT [INRIA, ICCV'13]	64.70%	77.98%	68.69%
C3D [FAIR, ICCV'15]	65.80%	81.16%	67.68%
VGG [U of Oxford, ICLR'15]	66.59%	82.70%	70.22%
ResNet [MSRA,CVPR'16]	71.43%	86.45%	76.56%
P3D ResNet	75.12%	87.71%	78.86%

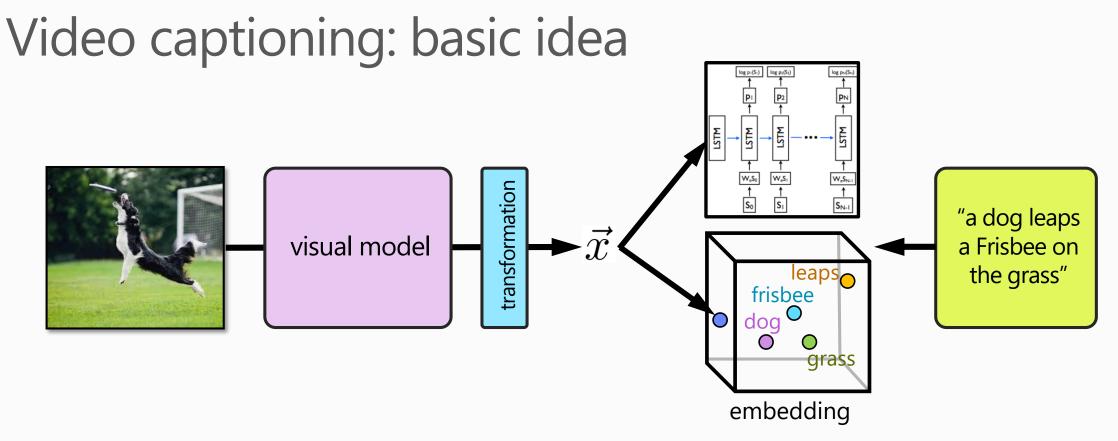
Method	Accuracy	AUC
MIP [Tel Aviv U, ECCV'12]	65.5%	71.9%
IDT+FV [INRIA, ICCV'13]	68.7%	75.4%
C3D [FAIR, ICCV'15]	78.3%	86.5%
ResNet [MSRA,CVPR'16]	70.4%	77.4%
P3D ResNet	80.8%	87.9%

Method	Dynami c Scene	YUPENN
[U Penn, CVPR'12]	43.1%	80.7%
[York U, CAN, CVPR'14]	77.7%	96.2%
C3D [FAIR, ICCV'15]	87.7%	98.1%
ResNet [MSRA,CVPR'16]	93.6%	99.2%
P3D ResNet	94.6%	99.5%

This part

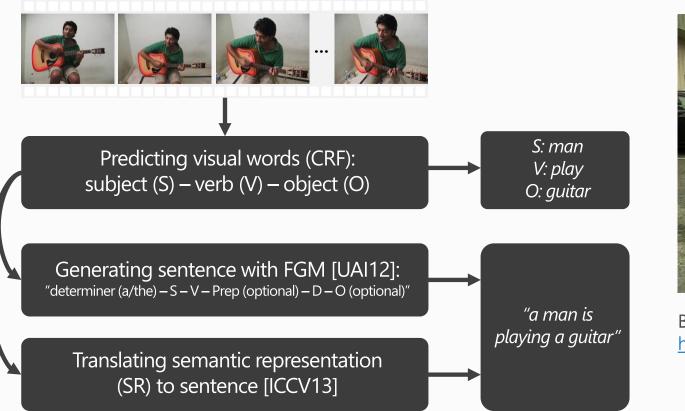
- Video representation learning
- Action recognition
- Video captioning
- Semantic video segmentation

Vision to language: video captioning


"a group of people are dancing" [Pan and Mei, CVPR'16]

"I love baseball" "That's how to play baseball" "That's an amazing play" [Li, Yao, Mei, MM'16]

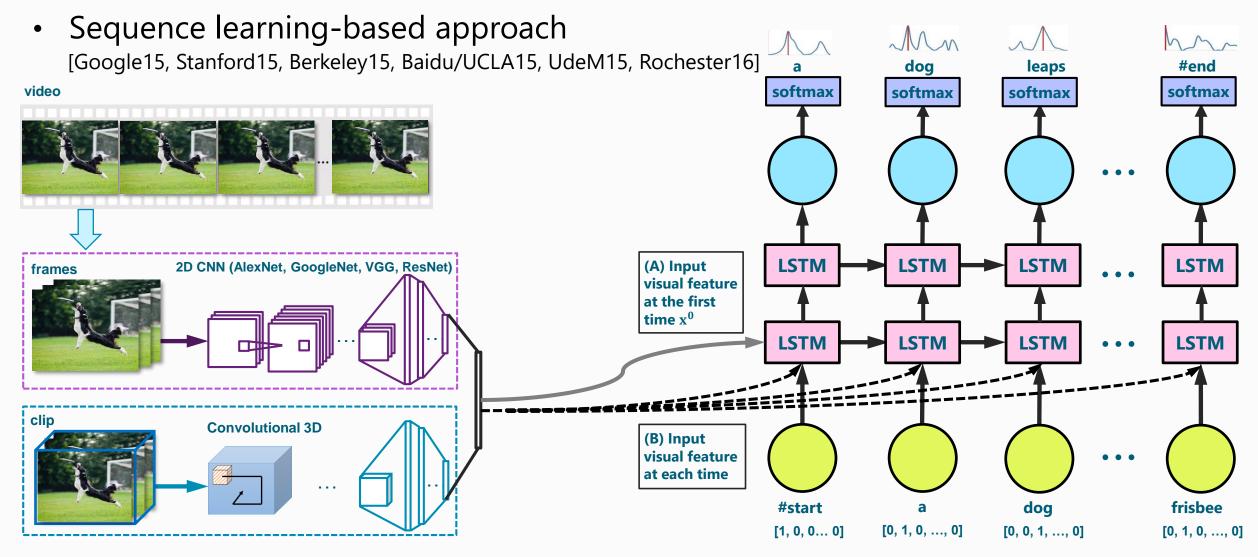
"Not just beautiful" "You are so beautiful" "Goddess doesn't need plastic surgery" [Li, Yao, Mei, MM'16]



- Transforming an image/clip to a vector in visual space
 - CRF, CNN, Semantic Vector, CNN+Attention
- Transforming description to a vector in semantic space
 - Collection of words (BoW), sequence of words (RNN)
- Creating an embedding space
 - Language template (FGM, ME), RNNs (Encoder-Decoder), LSTM

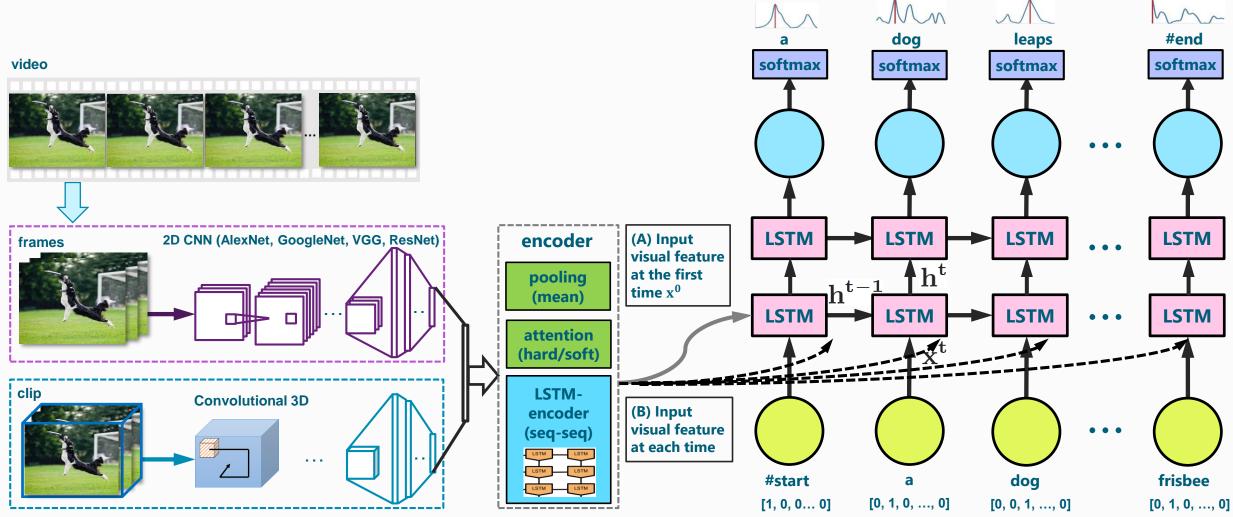
- Methodologies
 - Search-based
 - Language template-based
 - Sequence learning-based
 - Generation: learning-decoder
 - Translation: encoder-decoder

Video captioning


• Language model-based approach [Thomason, COLING14; Barbu, UAI12; Rohrbach, ICCV13; Krishnamoorthy, AAAI13]

Barbu, et al. "Video In Sentences Out", UAI 2012. https://www.youtube.com/watch?v=tu3jMxCJPMw

Video captioning

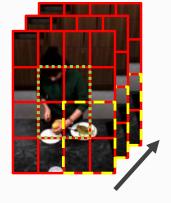


- UC Berkeley [Donahue, CVPR'15]:
- UdeM [Yao, ICCV'15]:
- UT Austin [Venugopalan, ICCV'15]:
- UT Austin [Venugopalan, NAACL-HLT'15]: AlexNet + Mean Pooling + LSTM (B)
- MSRA [Pan, LSTM-E, CVPR'16]:

CRF + LSTM encoder-decoder + LSTM (A/B)

- (GoogleNet + 3D CNN) + Soft-Attention + LSTM (B)
- (VGG + Optical Flow) + LSTM Encoder-Decoder + LSTM (A)

(VGG + 3D CNN) + Mean Pooling + Relevance Embedding + LSTM (A)


Video Captioning with **X**


X = temporal attention [Yao, CVPR'15]

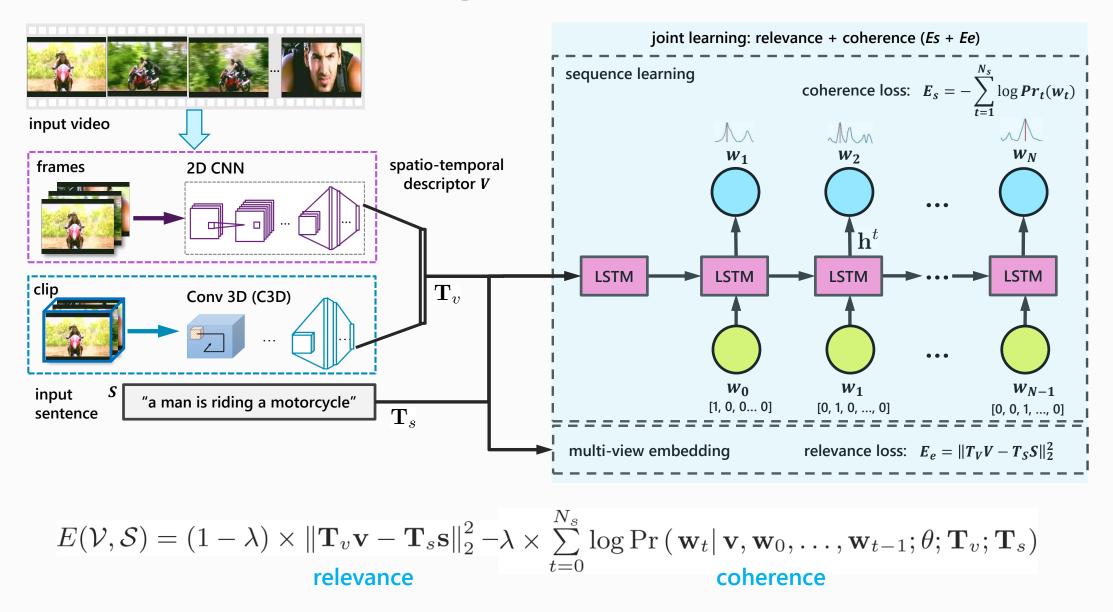
X = visual attributes [Pan, CVPR'16'17; Yu, CVPR'17]

X = **spatiotemporal attention** [Yu, CVPR'16]

X = dense caption [Krishna, ArXiv'17; Shen, CVPR'17]

Video Captioning with Semantics

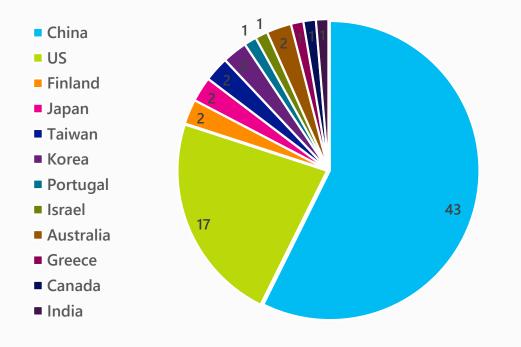
- Key issues in sentence generation
 - relevance: relationship between sentence (S, V, O) semantics and content
 - coherence: sentence grammar


LSTM: a man is playing a guitar LSTM-E: a man is playing a piano

LSTM: a man is dancing LSTM-E: a group of people are dancing

- Joint learning (LSTM-E): relevance + coherence [Pan, CVPR'16]
 - Explicitly and holistically emphasize video content with "relevance" regularizer

Video captioning w/ LSTM-E [CVPR'16'17]

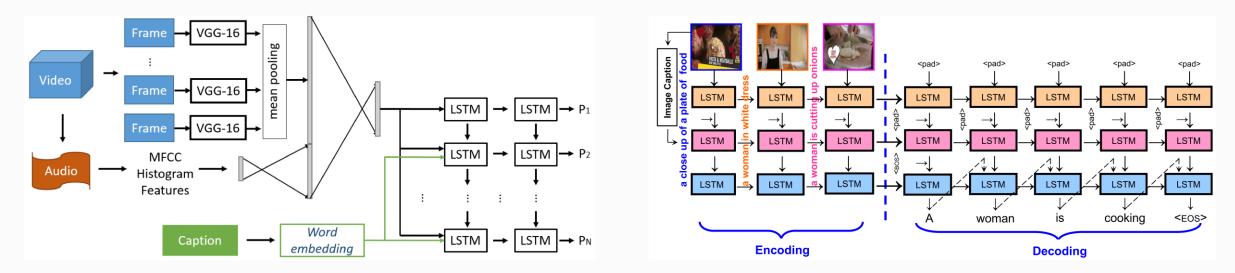


<u>Microsoft Video to</u> <u>Language Challenge</u> 2016

M1

M2

77 teams registered challenge22 teams submitted resultsAwards will be announced at ACMMM

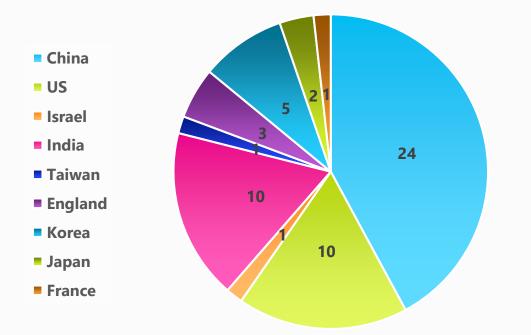


IVI I	IVIZ								
Rank	Team Organ		nization	BLEU@4	Me	eteor	CIE)Er-D	ROUGE-L
1	v2t_navigator RUC		& CMU	0.408	0.2	282	0.4	48	0.609
2	Aalto	Aalto	University	0.398	0.2	269	0.4	57	0.598
3	VideoLAB	UML	& Berkeley & UT-Austin	0.391	0.2	277	0.4	41	0.606
4	ruc-uva	RUC	& UVA & Zhejiang University	0.387	0.2	269	0.4	59	0.587
5	Fudan-ILC	Fuda	n & ILC	0.387	0.2	268	0.4	19	0.595
6	NUS-TJU	NUS	& TJU	0.371	0.2	267	0.4	10	0.590
7	Umich-COG	Unive	ersity of Michigan	0.371	0.2	266	0.4	11	0.583
8	MCG-ICT-CAS	ICT-C	CAS	0.367	0.2	264	0.4	04	0.590
9	DeepBrain	NLPF	R_CASIA & IQIYI	0.382	0.2	0.259		01	0.582
10	NTU MIRA	NTU		0.355	0.2	261	0.3	83	0.579
M1 Rank	M2 Team		Organization			C1		C2	C3
1	Aalto		Aalto University			3.263		3.104	3.244
2	v2t_navigator		RUC & CMU		3.261		3.091	3.154	
3	VideoLAB	UML & Berkeley & UT-Austin		3.237		3.109	3.143		
4	Fudan-ILC	Fudan-ILC Fudan & ILC		3.185		2.999	2.979		
5	ruc-uva		RUC & UVA & Zhejiang University		3.225		2.997	2.933	
6	Umich-COG		University of Michigan		3.247		2.865	2.929	
7	NUS-TJU		NUS & TJU		3.308		2.833	2.893	
8	DeepBrain		NLPR_CASIA & IQIYI		3.259		2.878	2.892	
9	NLPRMMC	IC CASIA & Anhui University			3.266		2.868	2.893	
10	MCG-ICT-CAS		ICT			3.339		2.800	2.867

MSR Video to Language Grand Challenge 2016

• CNN-LSTM [1, 2, 4, 5, 7]

• Sequence-to-Sequence (encoder-decoder) [3, 6, 9, 10]


- Image features
 - VGG-19 [1][2][5][6][9][10]
 - GoogleNet [2][4][5]
 - ResNet [3][5][8]
 - VGG-16 [5][7][8]
 - PlaceNet [5][9]

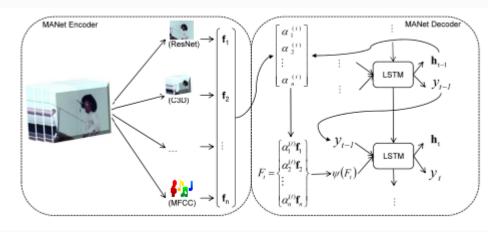
- Motion features
 - C3D [1][2][3][4][5][9][10]
 - IDT [1][2]
 - Optical flow [8]
- Acoustic features
 - MFCCs [1][3][7]

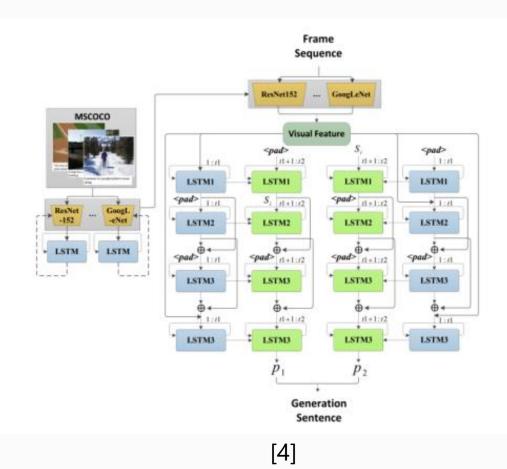
- Text features
 - ASR [1]
- Video category [3][4]

<u>Microsoft Video to</u> Language Challenge 2017

57 teams registered challenge8 teams submitted resultsAwards will be announced at ACMMM'17

M1	IVI2					
Rank	Team	Organization	BLEU@4	Meteor	CIDEr- D	ROUGE- L
1	RUC+CMU_V2T	RUC & CMU	0.390	0.255	0.315	0.542
2	TJU_Media	TJU	0.359	0.226	0.249	0.515
3	NII	National Institute of Informatics	0.359	0.234	0.231	0.514
4	MIC_TJU	Tongji University	0.351	0.226	0.236	0.509
5	Illusion	IIT Delhi	0.304	0.213	0.206	0.494
6	LVIC_AS	CEA LIST	0.289	0.203	0.175	0.487
7	TJU-NUS	TJU & NUS	0.265	0.191	0.151	0.456
8	AFRL	AFRL	0.240	0.186	0.160	0.427


M4


142

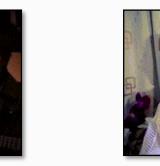
M1	M2					
Rank	Tean	ı	Organization	C1	C2	C3
1	RUC	+CMU_V2T	RUC & CMU	4.437	3.437	3.567
2	NII		National Institute of Informatics	4.078	3.359	3.570
3	TJU_	Media	TJU	4.032	2.962	3.048
4	MIC_	TJU	Tongji University	3.844	2.789	2.978
4	Illusi	on	IIT Delhi	4.042	2.583	2.921
6	TJU-	NUS	TJU & NUS	3.762	2.364	2.376
7	AFRI	L	AFRL	3.109	2.343	2.411
8	LVIC	_AS	CEALIST	3.477	2.322	2.321

MSR Video to Language Grand Challenge 2017

- Some other observations
 - Sentence Reranking [1]
 - Additional data from MSCOCO [7]
 - Additional semantic information [7]
 - Video category information [1]
 - Multi-modality fusion [1][2]

Vision to language: auto-commenting [Li, MM'16]

- * The eyebrow is pretty 0.5613
- * Beautiful 0.5388
- * Still looks so pretty 0.5314
- * Candy to the eyes 0.5285
- * Very beautiful 0.5189


- * Such a beautiful daughter 0.4469
- * What a cute and beautiful baby 0.4335
- * It's too pretty 0.4274
- * Such a beautiful baby 0.4237
- * Baby is the most beautiful gift of the whole world 0.4181

- * What kind of dog is this? very cute 0.4884 * Is this a dog? 0.4714
- * It looks exactly like my dog. Even the way they look at you is alike 0.4588
- * Your dog is so cute, beautiful lady 0.4573 * Cute puppy 0.4571

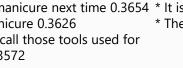
- * Beautiful manicure takes you into spring 0.4156
- * Bohemian manicure 0.4014
- * Will do this manicure next time 0.3654 * It is all red after been slapped 0.2818
- * Beautiful manicure 0.3626
- * How do you call those tools used for manicure? 0.3572

- * It's pretty and I love ancient cloth too 0.4610
- * Beautiful Goddess 0.4395
- * Super beautiful 0.4253
- * it is beautiful 0.4145
- * Beautiful 0.4142

- * The last one was very harsh 0.3413 * It is red 0.3136
- * The last one hurts hatched more 0.2976
- * The last hit hurt me more 0.2813

- * Behave so much better than my Samoyed 0.6156
- * This is Samoyed, right? 0.5723
- * So cute that I miss my own Samoyed 0.5272
- * The puppy Samoyed is the cutest 0.4863
- * I want a Samoyed indeed 0.4768

- * Little cutie 0.4643
- * The hat is so cute 0.4201
- * The eyes are so beautiful. It's too cute and I love it so much 0.4102
- * Baby looks so handsome with the hat on. So cute 0.3950
- * Such a cute little baby 0.3927



- * Mr. Guitar is enjoying it too much 0.4779 * Sounds wonderful, hope that I can hear the whole version of each song 0.4715 * I am moved by the guitar player 0.4507
- * Want to hear the final version 0.4373

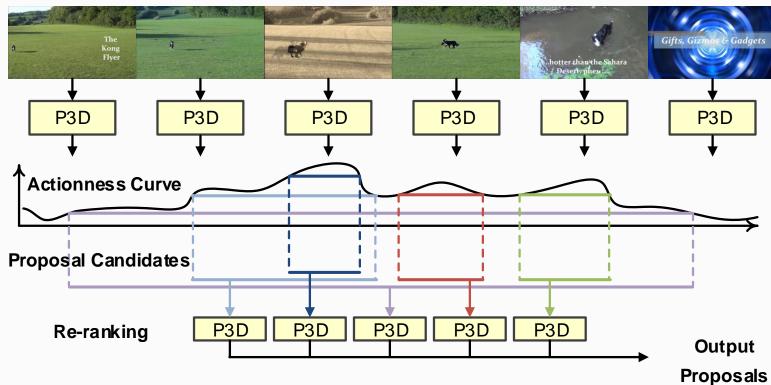
* Sounds fantastic when put together 0.4341

- * Such a cute kitty 0.6174
- * What kind of cat is this? Too cute 0.6095
- * It looks too comfortable and makes me want to be a cat too 0.5817
- * Is it Garfield? 0.5575
- * What cat is this? So cute 0.5537

Dense video captioning w/ P3D [Yao & Mei, CVPR'17]

1. An athletic man is seen standing before a beam and begins performing a gymnastics routine. [1.997, 11.198]

2. He then performs a gymnasts routine while swinging himself all around the bar and ends by jumping down. [19.723, 43.410]

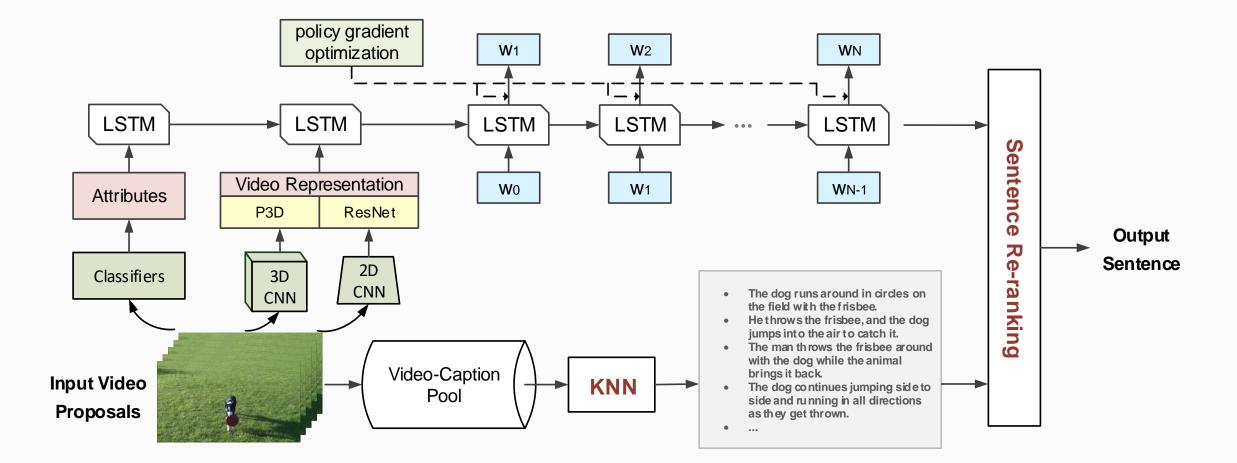

3. The man is then shown flips on the bars. [25.841, 40.337]

4. The man is then shown on the bars and jumping off the bars. [35.758, 46.546]

5. A man is seen standing on a set of bars and performing a routine in a gym on the bars. [0.000, 47.056]

Event localization: actionness detection + grouping + re-ranking

Input Untrim med Video


Performance on validation set in temporal action proposal task

Network	Pre- trained	AUC
ResNet	ImageNet	59.03
ResNet	+Kinetics	60.13
P3D ResNet	Sports-1M	60.76
P3D ResNet	+Kinetics	61.13
Fusion (4 in 1)		63.12
Test Server		64.18

1. actionness = proposal (highlight)

2. Kinetics is the dataset for trimmed video classification in ActivityNet

Dense video captioning w/ P3D [Yao & Mei, CVPR'17]

Rank 1 in the ActivityNet challenge 2017

- ActivityNet captions
 - 19,994 YouTube videos (10,024 training, 4,926 validation, 5,044 testing)
- 3.65 event proposals for each video, one ground-truth sentence for each event proposal
- Video representation: ResNet (Kinetics) + P3D ResNet
- Attributes: 200 categories in the untrimmed video classification dataset

#	Team	METEOR%	
1	Microsoft Research Asia	12.84	
2	University of Science and Technology of China	9.87	
3	Renmin University of China & Carnegie Mellon University	9.61	
4	Stanford University	4.82	

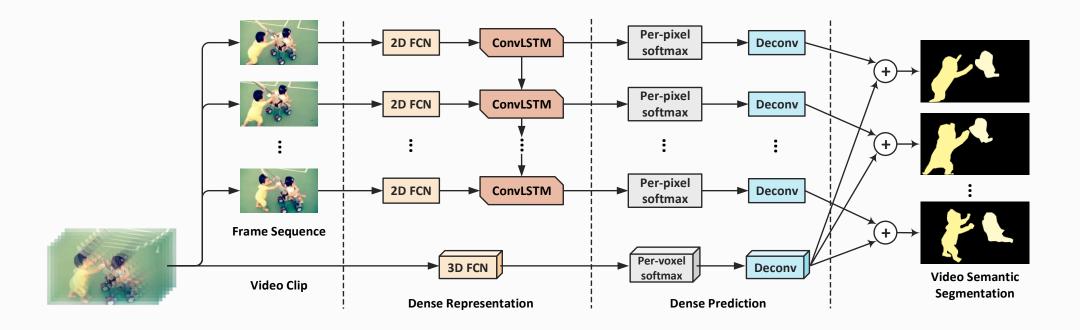
Datasets for Image/Video Captioning

100,000,000 10,000,000 YouTube-8M ImageNet
Opēn Images 10,000,000 Sports-1M. 1,000,000 KBK-1M ImageNet (ILSVRC) 1,000,000 SBU #Example 100,000 --**-**-TGIF------ FCVID SUN MPII-MD 100,000 Visual Genome M-VAD ActivityNet Caltech 256 CCV 10,000 Flickr 30K **UCF101** - - Pascal MSR-VTT HMDB51 10,000 Caltech 101 Flickr 8K Hollywood Μςνόρ 1,000 1.000 10 1.000 100 1,000 10,000 100 10,000 100,000 10 #Class #Class

image

video

Dataset for captioning.

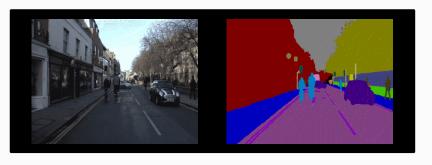

#Example

Note: The class information is unknown for Flickr 8K/30K, SBU, and MSVD, MPII-MD, M-VAD, TGIF.

Evaluation metrics for captioning

- Objective metrics
 - Accuracy of *S*%, *V*%, *O*%
 - ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) [Lin, 04]
 - BLEU@4 (BiLingual Evaluation Understudy) [Papineni, ACL'02] modified n-gram precision
 - METEOR (Metric for Evaluation of Translation with Explicit ORdering) [Banerjee, ACL05] similar with *f*-score combining precision and recall with a weight
 - CIDEr (Consensus-based Image Description Evaluation) [Vedantam, 2014; COCO evaluation]
- Subjective metrics human evaluations
 - Coherence, Relevance, Helpful for Blind [MSR Video to Language]

Video segmentation with P3D [Qiu, TMM'17]



Learning Spatiotemporal Dependency for Semantic Video Segmentation

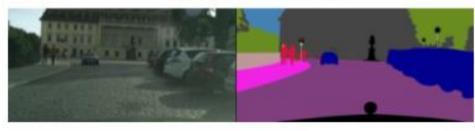
- Frame sequence: 2D FCN to learn spatial dependency + ConvLSTM to learn sequential information
- Video clip: 3D FCN to learn voxel-level spatio-temporal dependency

Video segmentation with P3D

- CamVid dataset
 - 11 class labels
 - 701 labeled frames in 5 videos

CamVid	Pix-Acc	mloU	
Active Inference [Liu, CVPR'15]	82.8 %	47.2 %	
FSO [Kundu, CVPR'16]	-	66.1 %	
Dilation8 [Yu, ICLR'16]	-	65.3 %	
2D FCN	91.8 %	66.4 %	
2D FCN + LSTM	92.0 %	68.1 %	
3D FCN	89.7 %	62.2 %	
DST-FCN	92.2 %	68.8 %	

- A2D dataset
 - 7 actor + 9 actions
 - 3,782 videos



A2D	Pix-Acc	mloU
Trilayer [Xu, CVPR'15]	72.9 %	
GPM [Xu, CVPR'16]	83.8 %	
2D FCN	91.6 %	25.1 %
2D FCN + LSTM	92.5 %	29.9 %
3D FCN	91.3 %	28.0 %
DST-FCN	93.0 %	33.4 %

Leaderboard of segmentation <u>challenge</u> at ICCV'17

Source Domain

Target Domain

#	Team Name	Affiliation	Score
1	RTZH	Microsoft Research Asia	47.5
2	_piotr_	University of Oxford, Active Vision Laboratory	44.7
3	whung	University of California, Merced, Vision and Learning Lab	42.4

Reference

•

... ...

- [Captioning] Y. Pan, T. Mei, T. Yao, et al. "Jointly Modeling Embedding and Translation to Bridge Video and Language," CVPR, 2016.
- [Captioning] J, Krishnamurthy, et al. "Generating Natural Language Video Descriptions using Text-mined Knowledge," AAAI, 2013.
- [Captioning] Karpathy, et al. "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2014.
- [Captioning] Vinyals, et al. "Show and Tell: A Neural Image Caption Generator", 2014.
- [Captioning] Kiros, et al. "Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models", 2014.
- [Captioning] Mao, et al. "Explain Images with Multimodal Recurrent Neural Networks", 2014.
- [Captioning] Donohue, et al. "Long-term Recurrent Convolutional Networks for Visual Recognition and Description", 2014.
- [Captioning] Xu, et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", 2015.
- [Commenting] Y. Li, T. Yao, T. Mei, et al. "Share-and-Chat: Achieving Human-Level Video Commenting by Search and Multi-View Embedding," ACM MM, 2016.
- [Sentiment] J. Wang, et al. "Beyond Object Recognition: Visual Sentiment Analysis with Deep Coupled Adjective and Noun Neural Networks," IJCAI, 2016.
- [Alignment] I. Naim, et al. "Unsupervised Alignment of Natural Language Instructions with Video Segments," AAAI, 2014.
- [Alignment] H. Yu, et al. "Grounded Language Learning from Video Described with Sentences," ACL, 2013.
- [Dataset] J. Xu, T. Mei, et al. "MSR-VTT: A Large Video Description Dataset for Bridging Video and Language," CVPR, 2016.
- [Dataset] Y. Li, et al. "TGIF: A New Dataset and Benchmark on Animated GIF Description," CVPR, 2016.

Learning materials

- Codes for P3D
 - <u>https://github.com/ZhaofanQiu/pseudo-3d-residual-networks</u>
- Codes for image captioning:
 - <u>https://github.com/karpathy/neuraltalk</u>, <u>https://github.com/karpathy/neuraltalk2</u>
 - LRCN for image caption: <u>https://github.com/jeffdonahue/caffe/tree/54fa90fa1b38af14a6fca32ed8aa5ead38752a09/examples/coco_caption</u>
 - LRCN for action recognition: https://github.com/LisaAnne/lisa-caffe-public/tree/lstm_video_deploy/examples/LRCN_activity_recognition
 - Show attend and tell <u>https://github.com/kelvinxu/arctic-captions</u>
- Codes for video captioning:
 - Sequence to Sequence Video to Text <u>https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt</u>
 - Soft-attention https://github.com/yaoli/arctic-capgen-vid

Thank you! We are hiring!

tmei@microsoft.com