

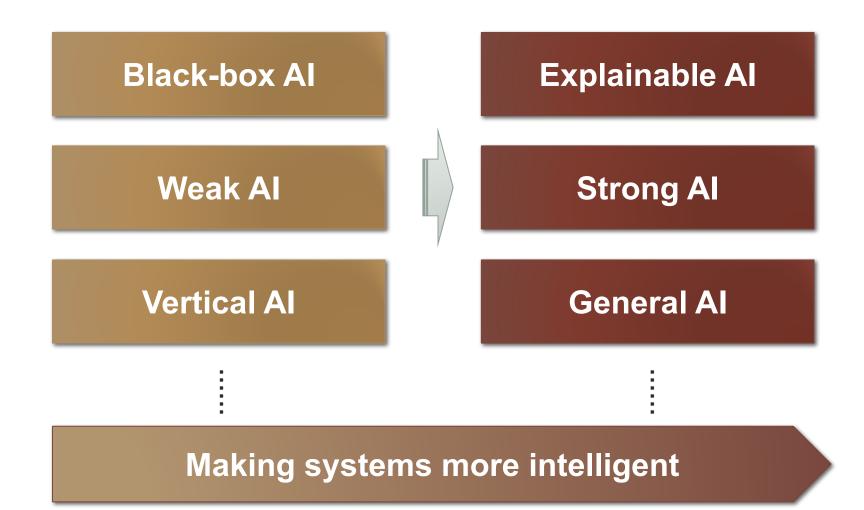
## **Human-like Visual Learning**

Peng Cui, Wenwu Zhu Tsinghua University

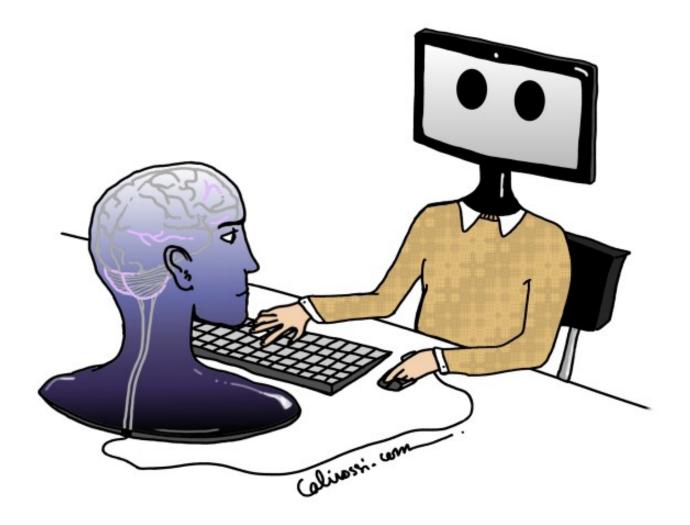
## **National Strategies for AI**

| L.                                                                                    | 国务院关于印发新一代人工智能发展规划的通知                                     |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
|                                                                                       | 国发〔2017〕35号                                               |  |  |  |  |  |
| THE NATIONAL<br>ARTIFICIAL INTELLIGENCE<br>RESEARCH AND DEVELOPMENT<br>STRATEGIC PLAN | 各省、自治区、直辖市人民政府,国务院各部委、各直属机构:                              |  |  |  |  |  |
| 51 KALEGIC PLAN                                                                       | 现将《新一代人工智能发展规划》印发给你们,请认真贯彻执行。                             |  |  |  |  |  |
| National Science and Technology Council                                               | 国务院<br>2017年7月                                            |  |  |  |  |  |
| Networking and Information Technology<br>Research and Development Subcommittee        | 新一代人工智能发展规划                                               |  |  |  |  |  |
| October 2016                                                                          | 人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能发展的重大战                   |  |  |  |  |  |
| STATE STORES                                                                          | 略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,按照党中央、国务院部署要求,制定本规划。 |  |  |  |  |  |
| HARD SHITTER                                                                          | 央、国务院部署要求,制定本规划。                                          |  |  |  |  |  |

### **Towards AI 2.0**



### **Reference Model: Human**



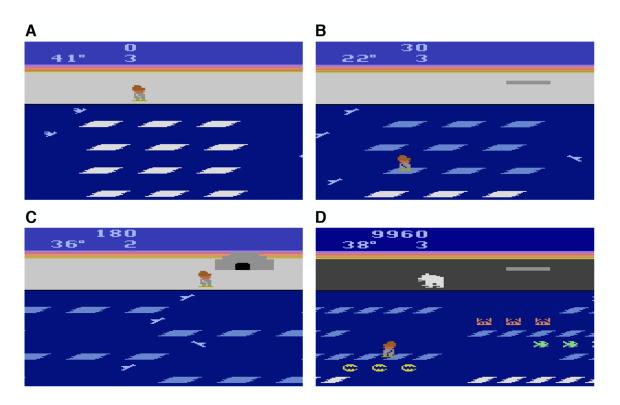
## **Machine Learning v.s. Human Learning**

- Learning Simple Visual Concepts
  - People learn from fewer examples
  - People learn richer representations
  - People can learn to recognize a new character from a single example
  - People learn a concept a model of the class that allows their acquired knowledge to be flexible applied in new ways.

Lake, Brenden M., et al. "Building machines that learn and think like people." *Behavioral and Brain Sciences* (2016): 1-101.

## Machine Learning v.s. Human Learning

#### The Frostbite Challenge



Lake, Brenden M., et al. "Building machines that learn and think like people." *Behavioral and Brain Sciences* (2016): 1-101.

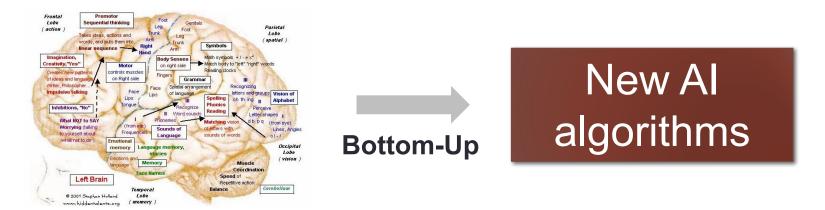
## Machine Learning v.s. Human Learning

- The Frostbite Challenge
  - Optimal Solution up till now: Deep Q Network
  - Shortcomings compared with humans
    - People use less time to practice to reach nearly the same average score: human for 2 hours and DQN for 924 hours.
    - Human could grasp the basics of the game just after a few minutes of playing.
    - If humans are able to watch an expert playing for a few minutes, they can learn even faster.
    - Humans are more flexible, i.e. after they learn how to play, they could finish arbitrary new tasks and goals. (e.g. get closest to score 300 etc.)

Lake, Brenden M., et al. "Building machines that learn and think like people." *Behavioral and Brain Sciences* (2016): 1-101.

## **Technical Paths of Learning from Human**

#### **Brain-like Learning**



#### Depends on how much we can understand human brain. The computer architecture v.s. brain architecture?

## **Technical Paths of Learning from Human**

#### **Human-like Learning**



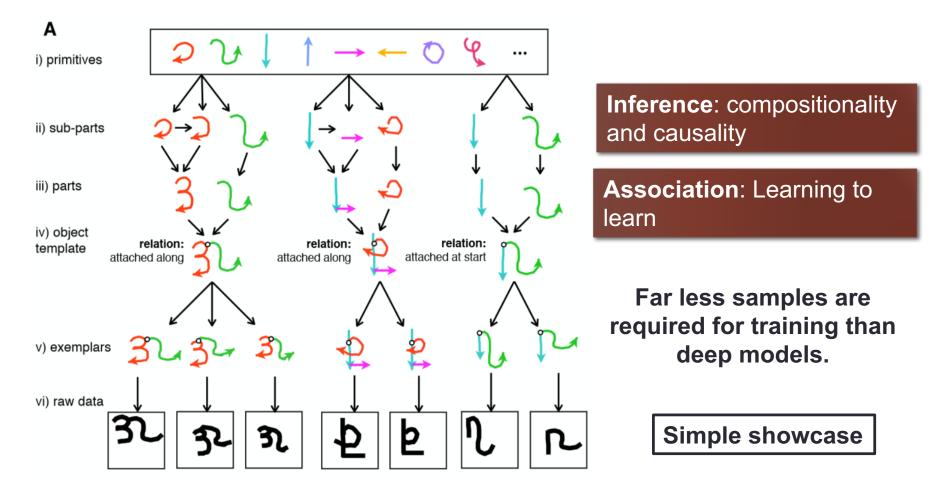
Top-down



Inference, association, imagine ...

Another path for inventing new learning mechanisms.

## **A Successful Example**



Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350 (6266), 1332-1338.

### **Human-like Visual Learning**

#### From human:

Can we learn from how people learn visual objects?

### For human:

Can we infer how people behave with visual objects?

### **Human-like Visual Learning**

#### From human:

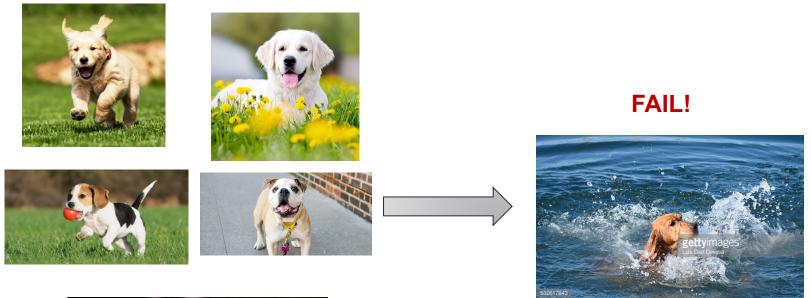
Can we learn from how people learn visual objects?

## **Deep Learning has dominated the visual world**



Deep learning has indeed advanced the visual learning significantly.

### (1) Simple Hypothesis: I.I.D.



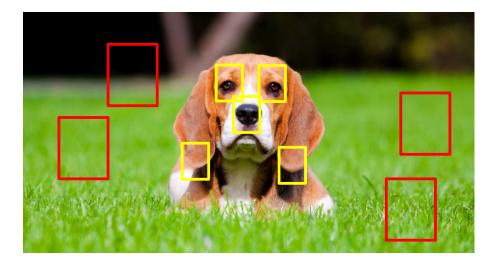


Worse case: small training samples?

## (1) Simple Hypothesis: I.I.D.

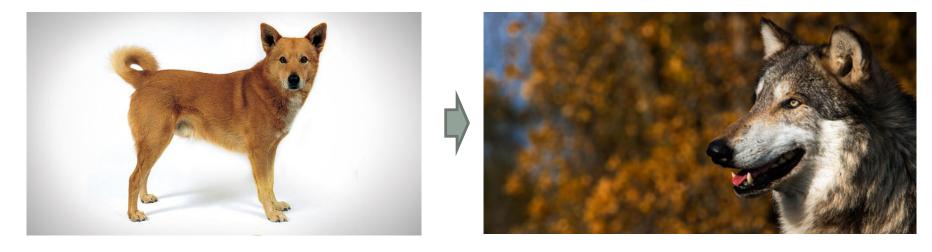
-Do we **human** have the same problem? -NO! We have strong **inference** ability.

Correlation features v.s. Causal features



#### Towards image classification: Correlation v.s. Causality?

## (2) Inept learning way



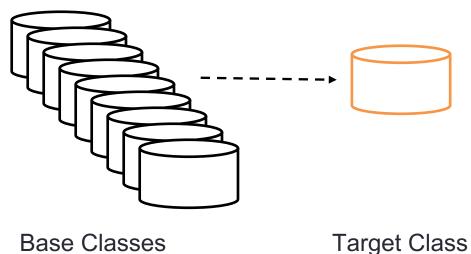
dog

wolf

What is the correct way of learning to recognize wolf, given that you have been able to recognize dog?

## (2) Inept learning way

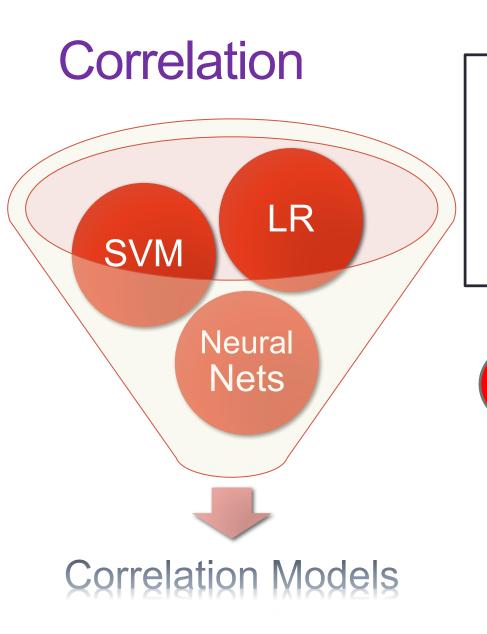
-How do we **Human** learn a new concept? -We learn by **association**.



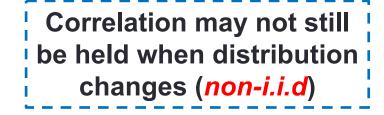
The more we have learned, the faster we should be able to learn new things.

Learning to learn new concepts

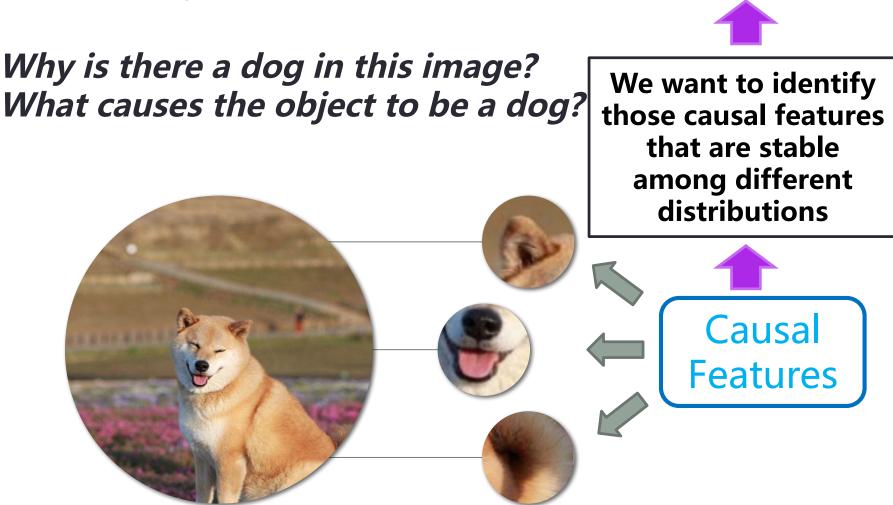
## Towards image classification: Correlation v.s. Causality?



These methods excel at leveraging the statistical dependence (*correlation*) between pixels and image label through training data



## Causality



#### 20

Causal Inference

## **Correlation v.s. Causality**



## Causal Inference

Estimate the correlation effect of variable **T** and output **Y** without evaluating the relationships between X and T.

Estimate the causal effect of treatment **T** on output **Y** under the confounder X(A/B Testing)

**Typical Causal Framework** 

Х



22

## Causal Inference by Absolute Matching

**Typical Causal Framework** 

#### Analogy of A/B Testing

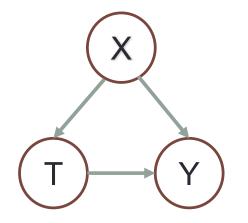
Given a visual feature T (e.g. a visual word)

Find out the image pairs that one contains T while the other don't, but they are similar in all other visual features.

Calculate the difference of Y distribution in treated and controlled groups. (correlation between T and Y)

The requirement is too strong and we can hardly find satisfied image pairs.

## Causal Inference by Confounder Balancing



**Typical Causal Framework** 

#### Analogy of A/B Testing

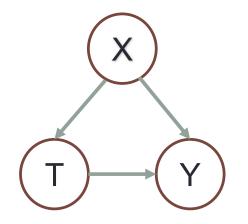
Given a visual feature T (e.g. a visual word)

Assign different weights to samples so that the samples with T and the samples without T have similar distributions in X

Calculate the difference of Y distribution in treated and controlled groups. (correlation between T and Y)

Too many parameters. For N samples and K feature, we need to learn K\*N weights.

# Causal Inference by Global Balancing



**Typical Causal Framework** 

#### Analogy of A/B Testing

Given **ANY** visual feature T (e.g. a visual word)

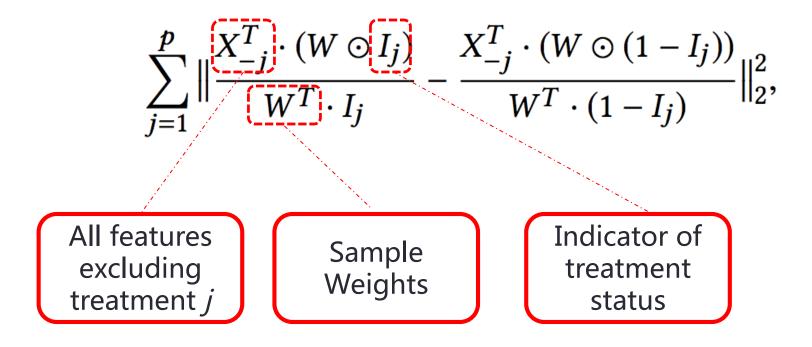
Assign different weights to samples so that the samples with T and the samples without T have similar distributions in X

Calculate the difference of Y distribution in treated and controlled groups. (correlation between T and Y)

#### Reduce the parameter number from K\*N to N.

## **Causal Regularizer**

Set image feature *j* as treatment variable



## Causally Regularized Logistic Regression

$$\begin{array}{ll} \min & \sum_{i=1}^{n} W_{i} \cdot \log(1 + \exp((1 - 2Y_{i}) \cdot (x_{i}[\beta]))), \\ s.t. & \sum_{j=1}^{p} \left\| \frac{X_{-j}^{T} \cdot (W \odot I_{j})}{W^{T} \cdot I_{j}} - \frac{X_{-j}^{T} \cdot (W \odot (1 - I_{j}))}{W^{T} \cdot (1 - I_{j})} \right\|_{2}^{2} \leq \lambda_{1}, \\ & W \geq 0, \quad \|W\|_{2}^{2} \leq \lambda_{2}, \quad \|\beta\|_{2}^{2} \leq \lambda_{3}, \quad \|\beta\|_{1} \leq \lambda_{4}, \\ & \text{Sample} \\ \text{reweighted} \\ \text{logistic loss} & (\sum_{k=1}^{n} W_{k} - 1)^{2} \leq \lambda_{5}, \\ & \text{Causal} \\ \text{Contribution} \end{array}$$

## Dataset

- Source: YFCC100M
- Type: high-resolution and multi-tags
- Scale: 10-category, each with nearly 1000 images
- Method: select 5 context tags which are frequently co-occurred with the major tag (category label)



## **Experimental Setting**

- Radical Context Bias
  - Training and testing set are formed by different contexts

### Moderate Context Bias

Training and testing set are formed by same contexts but with different percentages

### Label Composition Bias

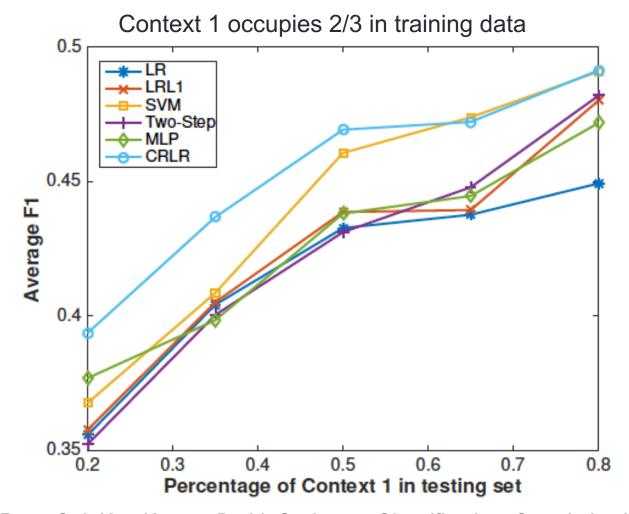
 Percentage of positive and negative samples are different in training and testing set

## **Experimental Result – radical bias**

#### Table 3: Results of classifiers under non-i.i.d. situation with radical context bias in data.

|          | bird     |       | bridge   |       | car      |            | cat      |       | church   |       |
|----------|----------|-------|----------|-------|----------|------------|----------|-------|----------|-------|
|          | Accuracy | F1    | Accuracy | F1    | Accuracy | <b>F</b> 1 | Accuracy | F1    | Accuracy | F1    |
| LR       | 0.629    | 0.414 | 0.644    | 0.450 | 0.709    | 0.588      | 0.617    | 0.456 | 0.760    | 0.637 |
| $LR+L_1$ | 0.582    | 0.283 | 0.630    | 0.413 | 0.692    | 0.559      | 0.609    | 0.424 | 0.699    | 0.571 |
| SVM      | 0.612    | 0.375 | 0.638    | 0.446 | 0.681    | 0.548      | 0.615    | 0.451 | 0.764    | 0.660 |
| Two-Step | 0.584    | 0.301 | 0.639    | 0.405 | 0.694    | 0.539      | 0.605    | 0.434 | 0.767    | 0.512 |
| MLP      | 0.568    | 0.379 | 0.617    | 0.337 | 0.708    | 0.583      | 0.586    | 0.523 | 0.667    | 0.634 |
| CRLR     | 0.657    | 0.564 | 0.617    | 0.472 | 0.729    | 0.678      | 0.669    | 0.597 | 0.779    | 0.633 |
|          | dog      |       | flower   |       | horse    |            | train    |       | tree     |       |
|          | Accuracy | F1    | Accuracy | F1    | Accuracy | <b>F</b> 1 | Accuracy | F1    | Accuracy | F1    |
| LR       | 0.565    | 0.370 | 0.734    | 0.635 | 0.580    | 0.362      | 0.592    | 0.398 | 0.732    | 0.618 |
| $LR+L_1$ | 0.576    | 0.307 | 0.718    | 0.613 | 0.580    | 0.321      | 0.589    | 0.384 | 0.697    | 0.569 |
| SVM      | 0.586    | 0.360 | 0.720    | 0.629 | 0.612    | 0.404      | 0.624    | 0.448 | 0.681    | 0.550 |
| Two-Step | 0.574    | 0.389 | 0.724    | 0.602 | 0.606    | 0.238      | 0.621    | 0.321 | 0.693    | 0.498 |
| MLP      | 0.579    | 0.360 | 0.726    | 0.611 | 0.606    | 0.388      | 0.617    | 0.432 | 0.710    | 0.573 |
| CRLR     | 0.727    | 0.574 | 0.762    | 0.681 | 0.649    | 0.435      | 0.647    | 0.479 | 0.738    | 0.620 |

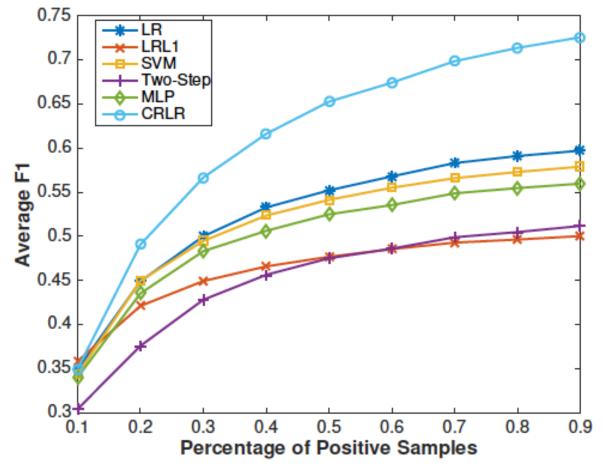
## **Experimental Result – moderate bias**



Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality? http://arxiv.org/abs/1708.06656

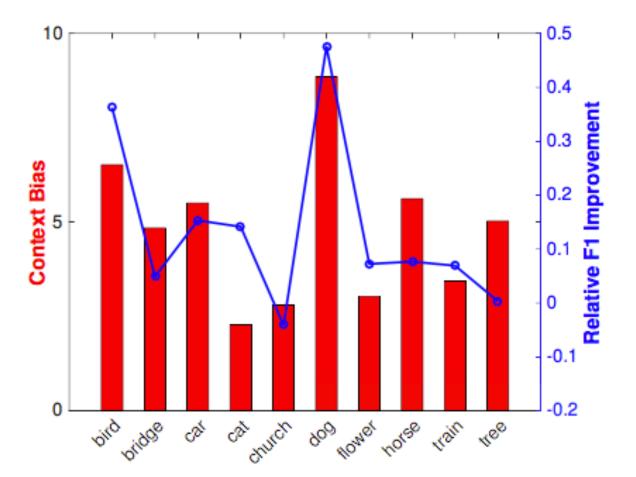
## Experimental Result – label bias

25% positive labels in training data

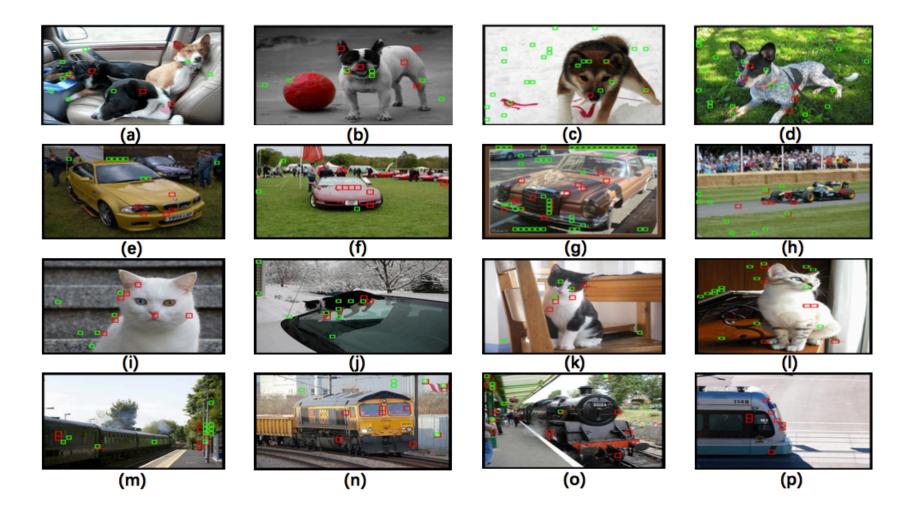


Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality? http://arxiv.org/abs/1708.06656

## **Experimental Result - insights**



## **Experimental Result - insights**



## **Learning to Learn Image Classifiers**

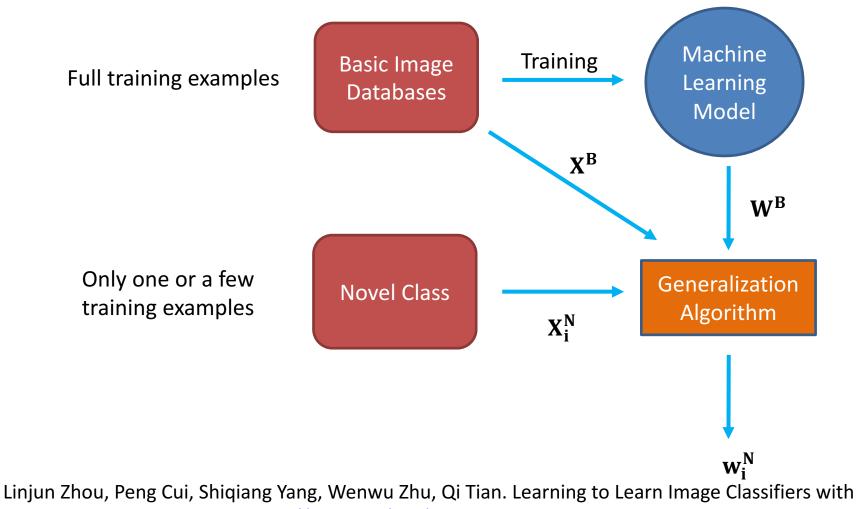
Linjun Zhou, Peng Cui, Shiqiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with Informative Visual Analogy, <u>https://arxiv.org/abs/1710.0617</u>

### **Problem Definition**

PROBLEM 1 (LEARNING TO LEARN IMAGE CLASSIFIERS). Given the image features of base classes  $X^B$ , the well-trained base classifier parameters  $W^B$ , and the image features of a novel class i  $X_i^N$  with only a few positive samples, **learn** the classification parameters  $w_i^N$  for the novel class, so that the learned classifier  $f(\cdot; w_i^N | X^B, W^B, X_i^N)$ can precisely predict labels for the i<sup>th</sup> novel class.

Linjun Zhou, Peng Cui, Shiqiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with Informative Visual Analogy, <u>https://arxiv.org/abs/1710.0617</u>

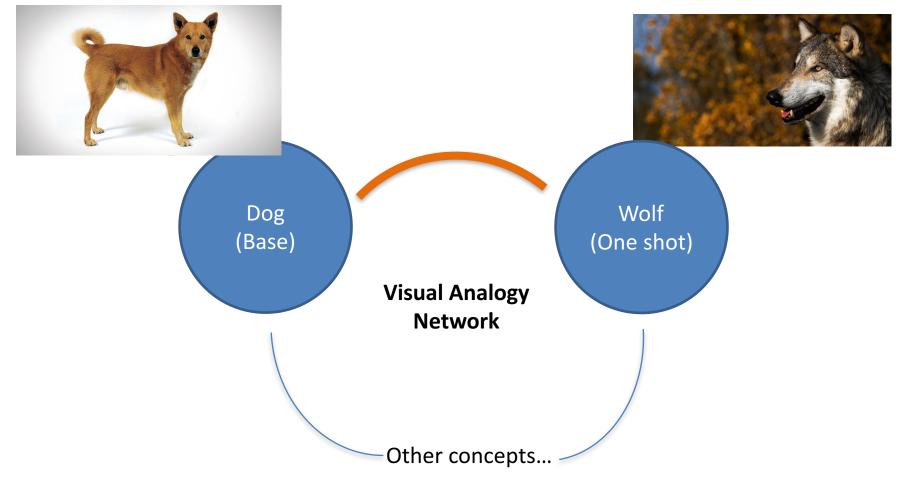
### **Problem Definition**



Informative Visual Analogy, <u>https://arxiv.org/abs/1710.0617</u>

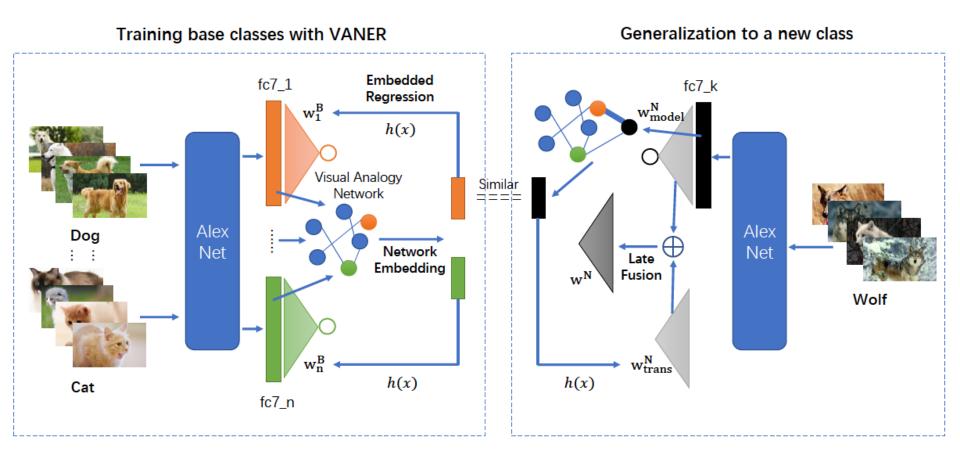
## **Algorithm – VANER (Intuition)**

How do human learn a concept without seeing many photos?



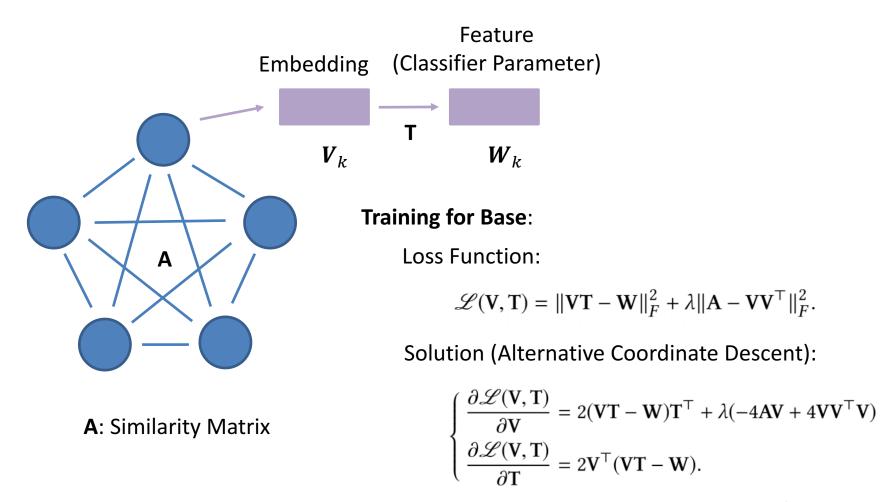
### **Algorithm – VANER**

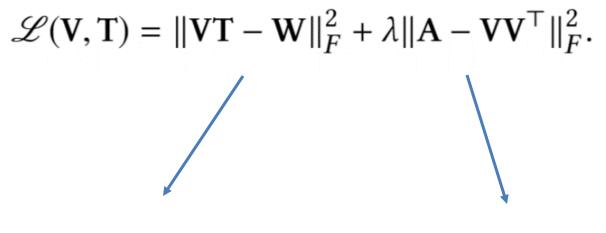
#### VANER: Visual Analogy Network Embedded Regression



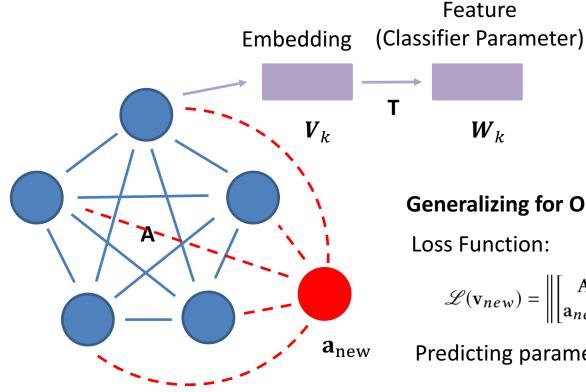
Linjun Zhou, Peng Cui, Shiqiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with Informative Visual Analogy, <u>https://arxiv.org/abs/1710.0617</u>

9





Keeping the precision of the predicted parameter Keeping the structure of the visual analogy network



#### **Generalizing for Oneshot:**

Loss Function:

$$\mathscr{L}(\mathbf{v}_{new}) = \left\| \begin{bmatrix} \mathbf{A} & \mathbf{a}_{new}^{\mathsf{T}} \\ \mathbf{a}_{new} & 1 \end{bmatrix} - \begin{bmatrix} \mathbf{V} \\ \mathbf{v}_{new} \end{bmatrix} \begin{bmatrix} \mathbf{V}^{\mathsf{T}} & \mathbf{v}_{new}^{\mathsf{T}} \end{bmatrix} \right\|_{F}^{2}$$

Predicting parameters:

$$\mathbf{w}_{new}^N = \mathbf{v}_{new} \mathbf{T}$$

**A**: Similarity Matrix

**Decreasing the Complexity:** 

$$\mathscr{L}(\mathbf{v}_{new}) = \left\| \begin{bmatrix} \mathbf{A} & \mathbf{a}_{new}^{\mathsf{T}} \\ \mathbf{a}_{new} & 1 \end{bmatrix} - \begin{bmatrix} \mathbf{V} \\ \mathbf{v}_{new} \end{bmatrix} \begin{bmatrix} \mathbf{V}^{\mathsf{T}} & \mathbf{v}_{new}^{\mathsf{T}} \end{bmatrix} \right\|_{F}^{2}$$

$$\Leftrightarrow \mathscr{L}(\mathbf{v}_{new}) = 2 \left\| \mathbf{a}_{new} - \mathbf{v}_{new} \mathbf{V}^{\mathsf{T}} \right\|_{2}^{2} + (\mathbf{v}_{new} \mathbf{v}_{new}^{\mathsf{T}} - 1).$$

To speed up, eliminate the second term of the loss function:

$$\Leftrightarrow \qquad \mathbf{v}_{new} = \mathbf{a}_{new} (\mathbf{V}^{\top})^+,$$

So, we could pre-compute  $(V^T)^+$ , where + represents pseudo-inverse.

### Algorithm – VANER (Late Fusion)

#### Initializing ( $w_{trans}$ as initialization):

$$\mathscr{L}(\mathbf{w}^N) = \left\{ \sum_{\mathbf{x} \in \mathbf{X}_T} L(f(\mathbf{x}, \mathbf{w}^N), y) \right\} + \lambda \cdot R(\mathbf{w}^N), \tag{8}$$

#### **Tuning:**

$$\mathscr{L}(\mathbf{w}^{N}) = \left\{ \sum_{\mathbf{x} \in \mathbf{X}_{T}} L(f(\mathbf{x}, \mathbf{w}^{N}), y) \right\} + \lambda \cdot \left\| \mathbf{w}^{N} - \mathbf{w}_{trans}^{N} \right\|_{F}^{2}.$$
 (9)

Voting (Best):

$$\mathbf{w}^{N} = \mathbf{w}_{trans}^{N} + \lambda \cdot \mathbf{w}_{model}^{N}.$$
 (10)

## **Experiment Settings**

- Dataset: ILSVRC 2015
- 800 Base Classes in ImageNet for training VANER, the base deep network we use is AlexNet
- 200 Novel Classes, each used for binary classification with whole base classes
- For each k-shot problem, we do 10 repeated tests with randomly split in novel class and take the average result.
- Evaluation Metric: AUC / F1 score

## **Experiment Baseline**

- Logistic Regression (LR)
- Weighted Logistic Regression (Weighted-LR)
- Model Regression Network (MRN)
- VANER
- VANER (-Mapping)
- VANER (-Embedding)

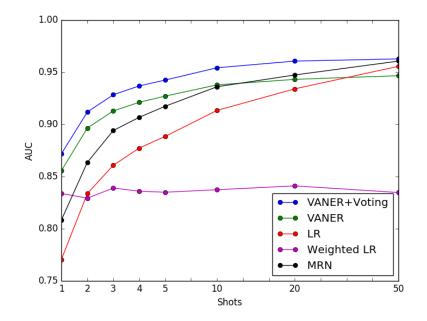
## **Experimental Results (1) – Late Fusion**

#### Table 2: Performance of different late fusion mechanism for k-shot problem

| Algorithm            | 1-shot |        | 5-shot |        | 10-shot |        | 20-shot |        |
|----------------------|--------|--------|--------|--------|---------|--------|---------|--------|
| Aigoritim            | AUC    | F1     | AUC    | F1     | AUC     | F1     | AUC     | F1     |
| VANER                | 0.8556 | 0.5292 | 0.9271 | 0.6491 | 0.9379  | 0.6721 | 0.9432  | 0.6850 |
| VANER + Initializing | 0.7662 | 0.3941 | 0.9030 | 0.6185 | 0.9338  | 0.6887 | 0.9461  | 0.7237 |
| VANER + Tuning       | 0.7923 | 0.4244 | 0.9098 | 0.6307 | 0.9365  | 0.7012 | 0.9466  | 0.7268 |
| VANER + Voting       | 0.8718 | 0.5671 | 0.9425 | 0.7039 | 0.9543  | 0.7343 | 0.9607  | 0.7510 |

#### The Voting method is proved to be a better method!

## **Experimental Results – Algorithm Performance**



Compared with logistic regression, we can save 4/5 samples to get similar performance.

#### Table 1: Performance of different algorithms for *k*-shot problem

| Algorithm          | Model Transfer | 1-shot |        | 5-shot |        | 10-shot |        | 20-shot |        |
|--------------------|----------------|--------|--------|--------|--------|---------|--------|---------|--------|
|                    |                | AUC    | F1     | AUC    | F1     | AUC     | F1     | AUC     | F1     |
| $VANER + Voting^*$ | Y              | 0.8718 | 0.5671 | 0.9425 | 0.7039 | 0.9543  | 0.7343 | 0.9607  | 0.7510 |
| VANER*             | Y              | 0.8556 | 0.5292 | 0.9271 | 0.6491 | 0.9379  | 0.6721 | 0.9432  | 0.6850 |
| VANER(-Mapping)    | Y              | 0.8261 | 0.4551 | 0.8526 | 0.4807 | 0.8726  | 0.5179 | 0.8897  | 0.5394 |
| VANER(-Embedding)  | Y              | 0.7922 | 0.4335 | 0.9032 | 0.6015 | 0.9183  | 0.6347 | 0.9393  | 0.6788 |
| LR                 | Ν              | 0.7705 | 0.3994 | 0.8885 | 0.5882 | 0.9134  | 0.6421 | 0.9341  | 0.6877 |
| Weighted – LR      | Y              | 0.8338 | 0.4680 | 0.8350 | 0.4691 | 0.8374  | 0.4711 | 0.8411  | 0.4726 |
| MRN                | Y              | 0.8083 | 0.4511 | 0.9175 | 0.6653 | 0.9361  | 0.7133 | 0.9474  | 0.7388 |

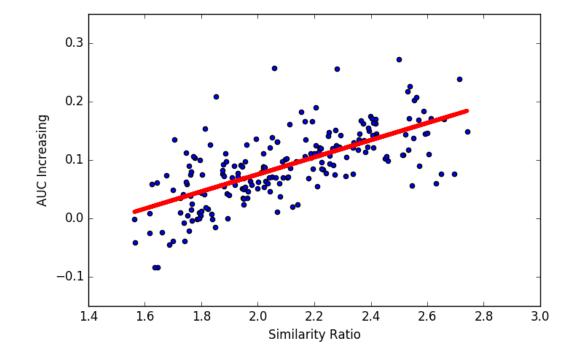
## **Experimental Results – Insightful Analysis**

| Category   | LR (No Transfer) | VANER (Transfer) |
|------------|------------------|------------------|
| Jeep       | 0.8034           | 0.9469           |
| Zebra      | 0.8472           | 0.9393           |
| Hen        | 0.7763           | 0.8398           |
| Lemon      | 0.6854           | 0.9583           |
| Bubble     | 0.7455           | 0.7041           |
| Pineapple  | 0.7364           | 0.8623           |
| Lion       | 0.8305           | 0.9372           |
| Screen     | 0.7801           | 0.9056           |
| Drum       | 0.6510           | 0.6995           |
| Restaurant | 0.7806           | 0.8787           |

Compared with no-transfer algorithm, our VANER is obviously better. However, there are some failure cases like Bubble.

#### What is the driving factor that controls the success of generalization?

### **Experimental Results – Insightful Analysis**

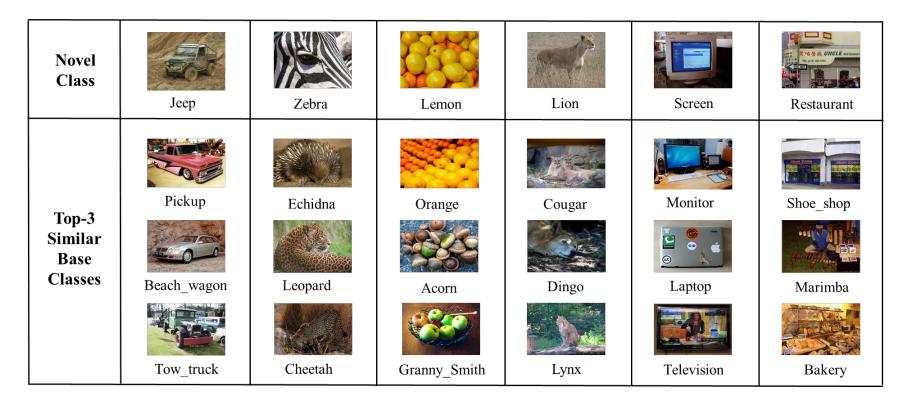


Def: Similarity Ratio =  $\frac{Average Top - k Base similarity}{Average Total Base similarity}$ 

AUC Increasing = AUC for VANER – AUC for LR

## **Experimental Results – Embedding Similarity**

#### The embedding layer is explainable:

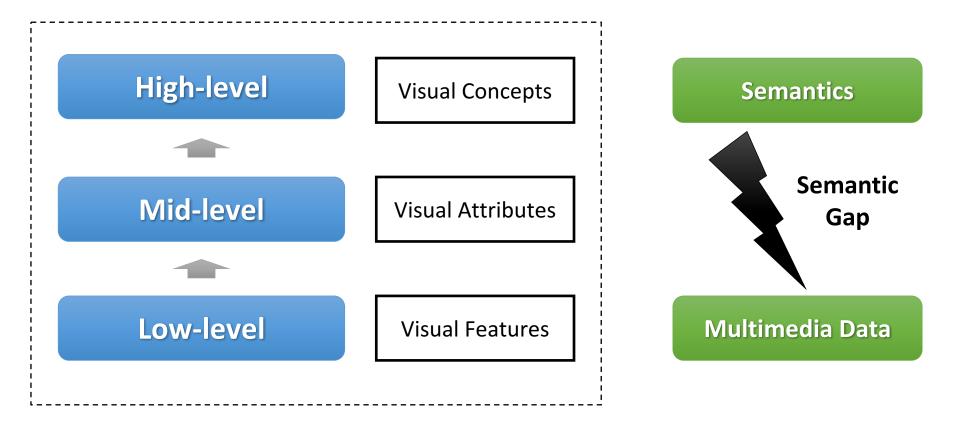


#### Figure 3: Top-3 most similar base classes to novel class on embedding layer in 5-shot setting.

## **Human-like Visual Reasoning and Learning**

### For human: Can we infer how people behave with visual objects?

## **Representation is a fundamental problem.**



## **Problems of semantic-oriented representations**

How much content can be described by textual semantics?

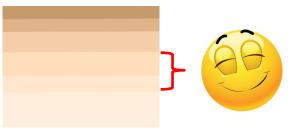


## **Problems of semantic-oriented representations**

Are human intentions purely determined by semantics?

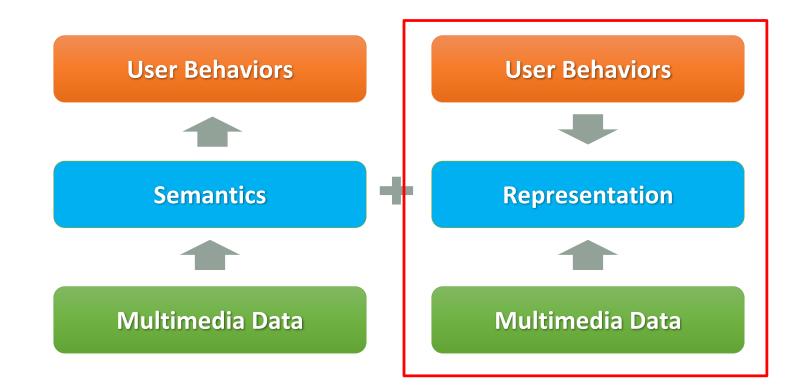




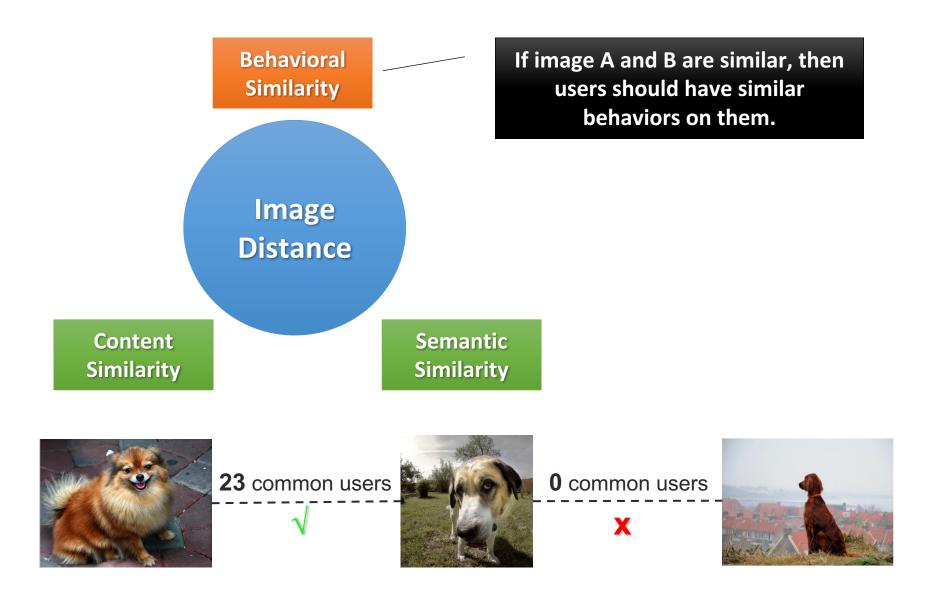


### **Revisit the Representation Learning for Multimedia**

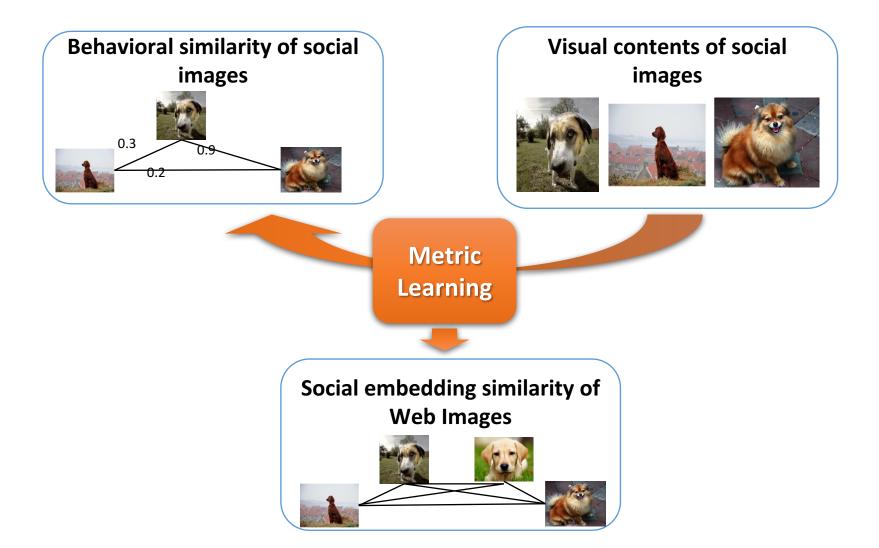
The transformation from multimedia data to semantics is lossy, and the lost information is non-trivial for inferring user behaviors.



## **Distance Metric: Behavioral Similarity**

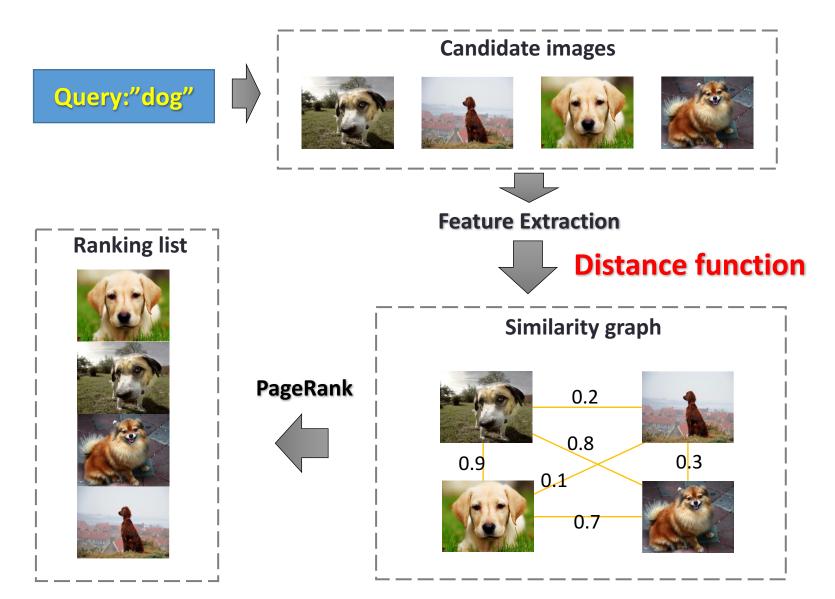


## **Old feature space, New distance metric**

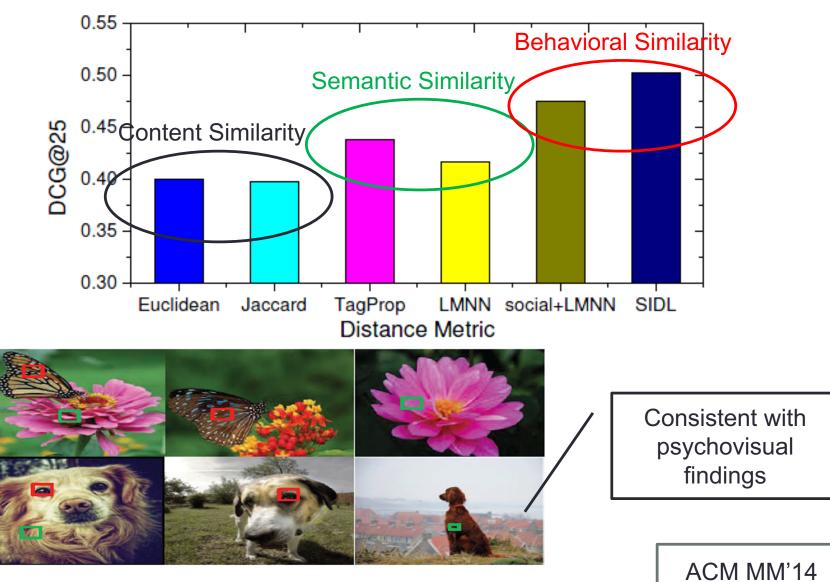


Shaowei Liu, Peng Cui, Wenwu Zhu, Shiqiang Yang, Qi Tian. Social Embedding Image Distance Learning. *ACM Multimedia*, 2014.

## Learned from Flickr, applied into Bing image



## **Results and Insights**

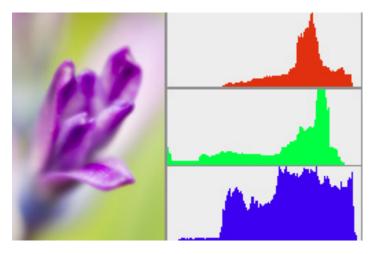


: high weights

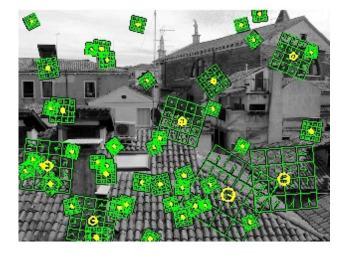
 $\Box$  : low weights

60

#### **One step further:** Can hand-crafted features well capture user intentions?



color histogram

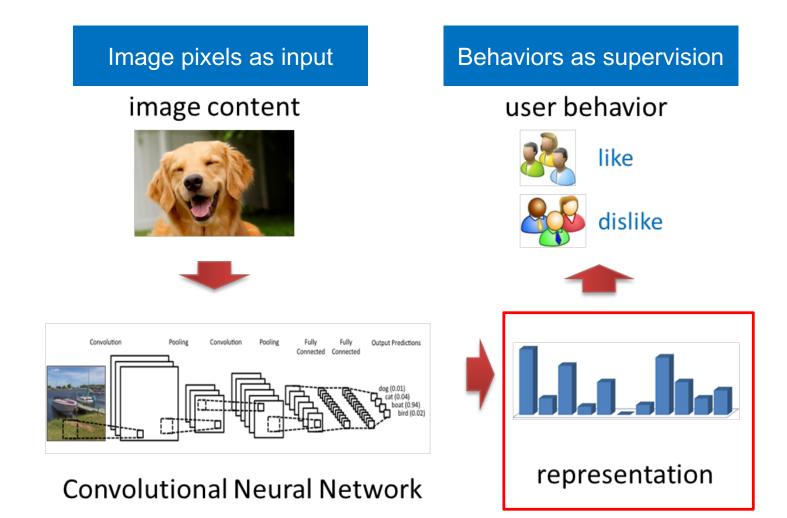


SIFT descriptor

#### They are designed for semantics, rather than intentions.

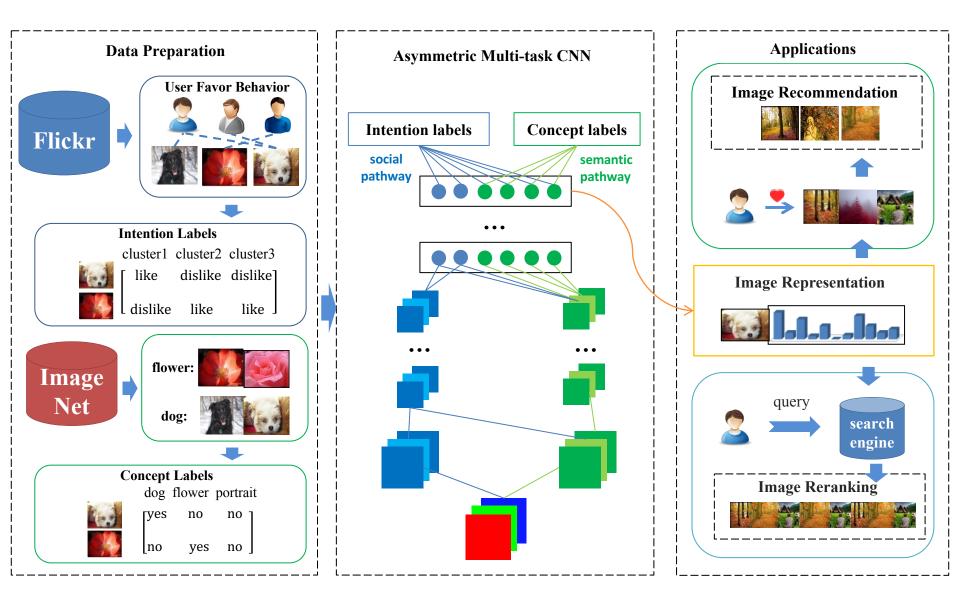
Shaowei Liu, Peng Cui, Wenwu Zhu, Shiqiang Yang. Learning Socially Embedded Visual Representation from Scratch. *ACM Multimedia*, 2015.

#### Learning socially embedded image representations from Scratch

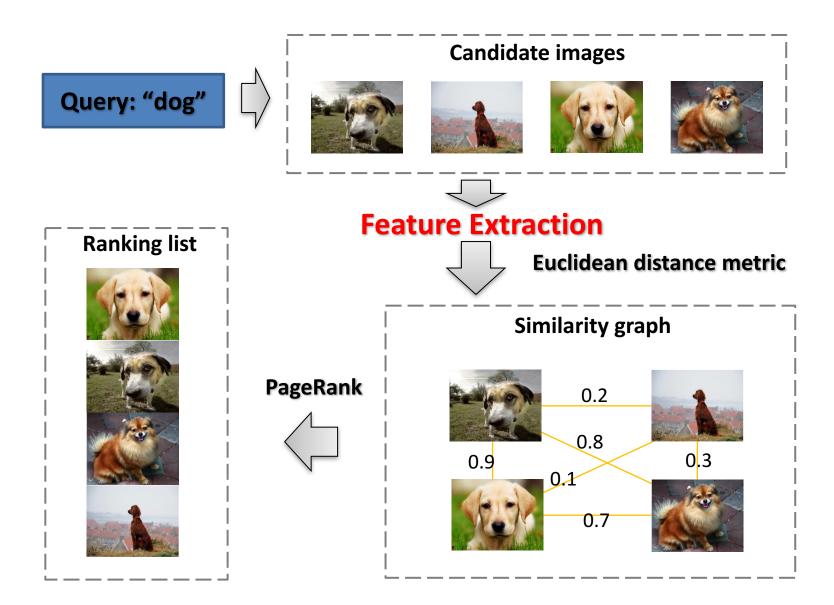


Shaowei Liu, Peng Cui, Wenwu Zhu, Shiqiang Yang. Learning Socially Embedded Visual Representation from Scratch. *ACM Multimedia*, 2015.

## The representation learning framework

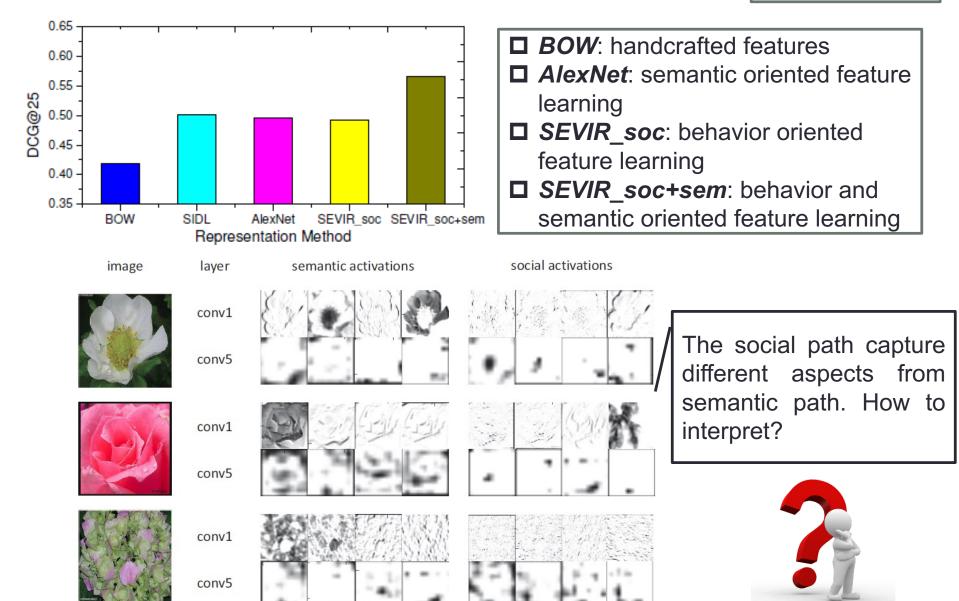


## Learned from Flickr, applied into Bing image



## **Results and Insights**

ACM MM'15



## **Summary and Messages**

- Beyond parameter tuning, it is more important to think about the learning mechanism.
- □Human-like learning and reasoning is the valuable source to get inspirations.
- From black-box prediction models to explainable learning and reasoning processes is more meaningful.
- Learning comprehensive and interpretable representations for multimedia to reflect user behaviors.

## References

- Peng Cui, Wenwu Zhu, Tat-Seng Chua, Ramesh Jain. Social-Sensed Multimedia Computing. *IEEE Multimedia*, 2016.
- Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality? <u>http://arxiv.org/abs/1708.06656</u>
- □ Linjun Zhou, Peng Cui, Shiqiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with Informative Visual Analogy, <u>https://arxiv.org/abs/1710.06177</u>
- Shaowei Liu, Peng Cui, Wenwu Zhu, Shiqiang Yang. Learning Socially Embedded Visual Representation from Scratch. ACM Multimedia, 2015.
- Shaowei Liu, Peng Cui, Wenwu Zhu, Shiqiang Yang, Qi Tian. Social Embedding Image Distance Learning. ACM Multimedia, 2014.
- Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Shiqiang Yang. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing. *KDD*, 2017.
- Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Fei Wang, Shiqiang Yang. Treatment Effect Estimation with Data-Driven Variable Decomposition. AAAI, 2017.

### Acknowledgement

#### **Students**



Zheyan Shen Tsinghua U



Linjun Zhou Tsinghua U



Kun Kuang Tsinghua U



Shaowei Liu Tsinghua U

#### **Collaborators**



Ramesh Jain UCI



Tat-Seng Chua NUS



Qi Tian UTSA

# Thanks!



## Peng Cui cuip@tsinghua.edu.cn http://media.cs.tsinghua.edu.cn/~multimedia/cuipeng/

