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Reference Model: Human




Machine Learning v.s. Human Learning

- Learning Simple Visual Concepts
- People learn from fewer examples
- People learn richer representations

- People can learn to recognize a new character from a single
example

- People learn a concept — a model of the class that allows their
acquired knowledge to be flexible applied in new ways.

Lake, Brenden M., et al. “Building machines that learn and think like people.” Behavioral
and Brain Sciences (2016): 1-101.



Machine Learning v.s. Human Learning

The Frostbite Challenge
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Lake, Brenden M., et al. “Building machines that learn and think like people.” Behavioral
and Brain Sciences (2016): 1-101.



Machine Learning v.s. Human Learning

* The Frostbite Challenge

« Optimal Solution up till now: Deep Q Network
« Shortcomings compared with humans

* People use less time to practice to reach nearly the same
average score: human for 2 hours and DQN for 924 hours.

 Human could grasp the basics of the game just after a few
minutes of playing.

 If humans are able to watch an expert playing for a few
minutes, they can learn even faster.

 Humans are more flexible, i.e. after they learn how to play,
they could finish arbitrary new tasks and goals. (e.g. get
closest to score 300 etc.)

Lake, Brenden M., et al. “Building machines that learn and think like people.” Behavioral
and Brain Sciences (2016): 1-101.



Technical Paths of Learnin

Brain-like Learnin
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Technical Paths of Learning from Human

Human-like Learning

New Al

Top-down algorithms

Inference, association, imagine ...

Another path for inventing new learning mechanisms.



A Successful Example
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Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350 (6266), 1332-1338.



Human-like Visual Learning

From human:
Can we learn from how people learn visual objects?

For human:
Can we infer how people behave with visual objects?




Human-like Visual Learning

From human:

Can we learn from how people learn visual objects?



Deep Learning has dominated the visual world

Learning This is a cat
Process (p=.93)
Training Learned Output

Data Function

Deep learning has indeed advanced the visual learning significantly.



What are the downsides?

(1) Simple Hypothesis: L.I.D.

Worse case: small training samples?



What are the downsides?

(1) Simple Hypothesis: L.I.D.

-Do we human have the same problem?
-NO! We have strong inference ability.

Correlation features v.s. Causal features

Towards image classification: Correlation v.s. Causality?




What are the downsides?

(2) Inept learning way

dog wolf

What is the correct way of learning to recognize wolf, given that you have been
able to recognize dog?



What are the downsides?

(2) Inept learning way

-How do we Human learn a new concept?
-We learn by association.

Base Classes Target Class

The more we have learned, the faster we should be able to learn new things.

Learning to learn new concepts



Towards image classification:
Correlation v.s. Causality?



Correlation

These methods excel at
leveraging the statistical
dependence (correlation)
between pixels and image

label through training data

| Correlation may not still '
@ I be held when distribution 1
changes (non-i.i.d) :

Correlation Models




Causality Causal Inference

*

. . . . .
Why is there a dog in this image: [ We want to identify
What causes the object to be a dog?| those causal features

that are stable
among different
distributions

e

Features




Correlation v.s. Causality
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R
Causal Inference

Estimate the correlation effect
Q(Xr) @ of variable T and output Y
without evaluating the

Typical Correlation Framework relationships between Xand T.

@ Estimate the causal effect of

treatment 7 on output Y
under the confounder X

@ @ (A/B Testing)

Typical Causal Framework




Causal Inference by Absolute Matching

Analogy of A/B Testing

Given a visual feature T (e.g. a visual word)

Find out the image pairs that one contains T
while the other don’t, but they are similar in
all other visual features.

Calculate the difference of Y distribution in

Typical Causal Framework treated and controlled groups. (correlation
between T and Y)

The requirement is too strong and we can hardly find

satisfied image pairs.



Causal Inference by Confounder Balancing

Analogy of A/B Testing

Given a visual feature T (e.g. a visual word)

Assign different weights to samples so that
the samples with T and the samples without
T have similar distributions in X

Calculate the difference of Y distribution in

Typical Causal Framework treated and controlled groups. (correlation
between T and Y)

Too many parameters. For N samples and K feature, we

need to learn K*N weights.



Causal Inference by Global Balancing

Analogy of A/B Testing

Given ANY visual feature T (e.g. a visual word)

Assign different weights to samples so that the
samples with T and the samples without T have
similar distributions in X

Calculate the difference of Y distribution in
Typical Causal Framework treated and controlled groups. (correlation
between T and Y)

Reduce the parameter number from K*N to N.

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Causal Regularizer

Set image feature j as treatment variable
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Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Causally Regularized Logistic Regression

———————————————————————————————————————————————-
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Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Dataset

- Source: YFCC100M
- Type: high-resolution and multi-tags
- Scale: 10-category, each with nearly 1000 images

- Method: select 5 context tags which are frequently
co-occurred with the major tag (category label)

N £

Prs
*



Experimental Setting

- Radical Context Bias
- Training and testing set are formed by different contexts

- Moderate Context Bias

- Training and testing set are formed by same contexts but with
different percentages

- Label Composition Bias

- Percentage of positive and negative samples are different in
training and testing set

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Experimental Result — radical bias

Table 3: Results of classifiers under non-i.i.d. situation with radical context bias in data.

bird bridge car cat church
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
LR 0.629 0414 0.644 0.450 0.709 0.588 0.617 0.456 0.760 0.637
LR+L, 0.582 0.283 0.630 0.413 0.692 0.559 0.609 0.424 0.699 0.571
SVM 0.612 0.375 0.638 0.446 0.681 0.548 0.615 0.451 0.764 0.660
Two-Step 0.584 0.301 0.639 0.405 0.694 0.539 0.605 0.434 0.767 0.512
MLP 0.568 0.379 0.617 0.337 0.708 0.583 0.586 0.523 0.667 0.634
CRLR 0.657 0.564 0.617 0.472 0.729 0.678 0.669 0.597 0.779 0.633
dog flower horse train tree
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
LR 0.565 0.370 0.734 0.635 0.580 0.362 0.592 0.398 0.732 0.618
LR+L, 0.576 0.307 0.718 0.613 0.580 0.321 0.589 0.384 0.697 0.569
SVM 0.586 0.360 0.720 0.629 0.612 0.404 0.624 0.448 0.681 0.550
Two-Step 0.574 0.389 0.724 0.602 0.606 0.238 0.621 0.321 0.693 0.498
MLP 0.579 0.360 0.726 0.611 0.606 0.388 0.617 0.432 0.710 0.573
CRLR 0.727 0.574 0.762 0.681 0.649 0.435 0.647 0.479 0.738 0.620

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Experimental Result — moderate bias

Context 1 occupies 2/3 in training data
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Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Experimental Result — label bias

25% positive labels in training data
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Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Experimental Result - insights
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Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Experimental Result - insights

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. On Image Classification: Correlation V.S. Causality?
http.//arxiv.org/abs/1708.06656



Learning to Learn Image Classifiers

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image
Classifiers with Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Problem Definition

PROBLEM 1 (LEARNING TO LEARN IMAGE CLASSIFIERS). Given
the image features of base classes XB, the well-trained base classifier
parametersWB, and the image features of a novel class i Xf.v with only

» . : N
a few positive samples, learn the classification parameters w;" for
the novel class, so that the learned classifier f( - ;wﬁv X5, wWh, Xﬁv )

can precisely predict labels for the i'h novel class.

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Problem Definition

Training Machine

Basic Image :
> Learning

Databases

Full training examples

XB
wB
Only one or a few Novel Class @l Generalization
training examples XN Algorithm

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Algorithm -VANER (Intuition)

How do human learn a concept without seeing many photos?

Visual Analogy
Network

Other concepts...

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




H——T
Algorithm — VANER

VANER: Visual Analogy Network Embedded Regression

Training base classes with VANER Generalization to a new class
fc7 1 Embedded
n Regression
wh <
h(x)
O
Visual Analogy
Network
Network
Embedding
O
h(x)

_______________________________________________________________________

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Algorithm — VANER (Details)

Feature
Embedding (Classifier Parameter)

O T
/ \ Vi Wi
/ \ Training for Base:

\ / Loss Function:
LV, T)=|[VT - W||7 + A[A - VV |2

Solution (Alternative Coordinate Descent):

o . 0ZW.T) _ 2(VT — W)TT + A(—4AV + 4VV V)
A: Similarity Matrix ov
0LV, T)
o =2V (VT = W).

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Algorithm — VANER (Details)

LV, T)=|[VT - W||% + A|[A - VVT ||

Keeping the precision Keeping the structure
of the predicted of the visual analogy
parameter network

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Algorithm — VANER (Details)

Feature
Embedding (Classifier Parameter)

Wy

Generalizing for Oneshot:

Loss Function:

2
L (Vnew) =

8

dnew Vnew

F

Predicting parameters:

N _
Whew = Vnew .

A: Similarity Matrix

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




H———— T
Algorithm — VANER (Details)

Decreasing the Complexity:

e Y VT vl

dnew Vinew

2
Z(Vnew) =

F
& ZL(Vnew) =2 ”anew - VnewVTllg + (Vnewvzew - 1).

To speed up, eliminate the second term of the loss function:
& Vnew = anew(V')",

So, we could pre-compute (VI)*, where + represents pseudo-inverse.

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Algorithm — VANER (Late Fusion)
Initializing (W4, s s initialization):

z(wN)={ D, LFwM)y) p+A-RwN), (8)

xeXT
Tuning:
2
L(wh) = {X;X: L(f(x, wh), y)} +A- HWN —whN G
Voting (Best):
WN:wxans+A-wﬁodel. (10)

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experiment Settings

* Dataset: ILSVRC 2015

* 800 Base Classes in ImageNet for training VANER,
the base deep network we use 1s AlexNet

* 200 Novel Classes, each used for binary classification
with whole base classes

* For each k-shot problem, we do 10 repeated tests with
randomly split in novel class and take the average
result.

* Evaluation Metric: AUC / F1 score

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experiment Baseline

* Logistic Regression (LR)

* Weighted Logistic Regression (Weighted-LR)
* Model Regression Network (MRN)

* VANER

 VANER (-Mapping)

 VANER (-Embedding)

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experimental Results (1) — Late Fusion

Table 2: Performance of different late fusion mechanism for k-shot problem

Aloorithm 1-shot 5-shot 10-shot 20-shot
gor AUC F1 AUC F1 AUC F1 AUC F1
VANER 0.8556  0.5292  0.9271 0.6491 0.9379  0.6721  0.9432  0.6850

VANER + Initializing 0.7662  0.3941  0.9030 0.6185 0.9338 0.6887 0.9461  0.7237
VANER + Tuning 0.7923 0.4244 0.9098 0.6307 0.9365 0.7012 0.9466  0.7268
VANER + Voting 0.8718 0.5671 0.9425 0.7039 0.9543 0.7343 0.9607 0.7510

The Voting method is proved to be a better method!

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experimental Results — Algorithm Performance

1.00
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Table 1: Performance of different algorithms for k-shot problem

. 1-shot 5-shot 10-shot 20-shot

Algorithm Model Transfer AUC I AUC I AUC I AUC 1
VANER + Voting* Y 0.8718 0.5671 0.9425 0.7039 0.9543 0.7343 0.9607 0.7510
VANER* Y 0.8556 0.5292 09271 0.6491 0.9379 0.6721 0.9432 0.6850
VANER(—Mapping) Y 0.8261 0.4551 0.8526 0.4807 0.8726 0.5179 0.8897 0.5394
VANER(—Embedding) Y 0.7922 0.4335 09032 0.6015 09183 0.6347 0.9393 0.6788
LR N 0.7705 0.3994 0.8885 0.5882 0.9134 0.6421 0.9341 0.6877
Weighted — LR Y 0.8338 0.4680 0.8350 0.4691 0.8374 0.4711 0.8411 0.4726
MRN Y 0.8083 0.4511 09175 0.6653 0.9361 0.7133 0.9474 0.7388




Experimental Results - Insightful Analysis

Category LR (No Transfer) VANER (Transfer)

Jeep 0.8034 0.9469
Zebra 0.8472 0.9393
Hen 0.7763 0.8398
Lemon 0.6854 0.9583
Bubble 0.7455 0.7041
Pineapple 0.7364 0.8623
Lion 0.8305 0.9372
Screen 0.7801 0.9056
Drum 0.6510 0.6995
Restaurant 0.7806 0.8787

Compared with no-transfer algorithm, our VANER 1s obviously better.
However, there are some failure cases like Bubble.

What is the driving factor that controls the success of generalization?

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experimental Results - Insightful Analysis

0.3 1

©
N
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o
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Def: Similarity Ratio =

AUC Increasing = AUC for VANER — AUC for LR

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Experimental Results — Embedding Similarity

The embedding layer is explainable:

Novel
Class
Restaurant
Shoe_shop
Top-3
Similar
Base :
Classes Beach wagon Leopard
Tow _truck Cheetah Granny Smith Television

Figure 3: Top-3 most similar base classes to novel class on embedding layer in 5-shot setting,.

Linjun Zhou, Peng Cui, Shigiang Yang, Wenwu Zhu, Qi Tian. Learning to Learn Image Classifiers with
Informative Visual Analogy, https://arxiv.org/abs/1710.0617




Human-like Visual Reasoning and Learning

For human:

Can we infer how people behave with visual objects?
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Representation is a fundamental problem.

______________________________________________________________

High-level Visual Concepts

Semantic
Gap

Low-level Visual Features Multimedia Data

______________________________________________________________

Visual Attributes




Problems of semantic-oriented representations

How much content can be described by textual semantics?




Problems of semantic-oriented representations

Are human intentions purely determined by semantics?




Revisit the Representation Learning for Multimedia

The transformation from multimedia data to semantics
iIs lossy, and the lost information is non-trivial for
inferring user behaviors.

User Behaviors

User Behaviors

+ Representation

Multimedia Data

Multimedia Data

¥
=




Distance Metric: Behavioral Similarity

Behavioral [y If image A and B are similar, then
Similarity users should have similar
behaviors on them.

Image
Distance

Content Semantic
Similarity Similarity




Old feature space, New distance metric

/~ Behavioral similarity of social / Visual contents of social \
images images

ﬂs\ -

Metric
Learning

.
ocial embedding similarity of\
Web Images

s

Shaowei Liu, Peng Cui, Wenwu Zhu, Shigiang Yang, Qi Tian. Social Embedding Image Distance
Learning. ACM Multimedia, 2014.



Learned from Flickr, applied into Bing image

Candidate images
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PageRank
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Results and Insights
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One step further:
Can hand-crafted features well capture user intentions?

ur

color histogram SIFT descriptor

They are designed for semantics, rather than intentions.

Shaowei Liu, Peng Cui, Wenwu Zhu, Shigiang Yang. Learning Socially Embedded Visual
Representation from Scratch. ACM Multimedia, 2015.



Learning socially embedded image representations from
Scratch

Image pixels as input Behaviors as supervision

image content user behavior

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected  Connected
L 11 e, 00g(0.01)
' 1 cat (0.04)
: 7 7]
- C - bird (0.02) - --
L |l a ul i -

Convolutional Neural Network representation

Shaowei Liu, Peng Cui, Wenwu Zhu, Shigiang Yang. Learning Socially Embedded Visual
Representation from Scratch. ACM Multimedia, 2015.



The representation learning framework

Data Preparation

User Favor Behavior

Asymmetric Multi-task CNN

nao

. D Intention labels Concept labels
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social semantic
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Intention Labels
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Learned from Flickr, applied into Bing image

PageRank

&




Results and Insights ACM MM'15
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Summary and Messages

OBeyond parameter tuning, it is more important to
think about the learning mechanism.

OHuman-like learning and reasoning is the valuable
source to get inspirations.

OFrom black-box prediction models to explainable
learning and reasoning processes Iis more
meaningful.

OLearning comprehensive and interpretable
representations for multimedia to reflect user
behaviors.
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